Книга

СТВОЛОВЫЕ КЛЕТКИ: БИОЛОГО-ФИЗИОЛОГИЧЕСКИЕ ЗАКОНОМЕРНОСТИ РАЗВИТИЯ, ФУНКЦИИ И МЕХАНИЗМЫ
В монографии приведены основные биолого-физиологические закономерности развития, функции, механизмы и виды дифференцировки стволовых клеток, их способность к размножению и генерации потомства на уровне популяции. Дается краткое обоснование двух принципиально разных типов стволовых клеток: плюрипотентных, которые существуют только in vitro, и тканевых, существующих in vivo в послеродовом организме. Показано, что плюрипотентные клетки могут приводить к появлению широкого спектра типов клеток, в отличие от тканевых, которые в нормальных условиях не генерируют клетки, характерные для других типов тканей. Представлены этапы развития плюрипотентных стволовых клеток. Обсуждается роль ключевых маркеров плюрипотентности и факт того, что самым надежным способом идентификации стволовых клеток является определение их фенотипа in vivo. Это свидетельствует о том, что стволовые клетки не несут универсального молекулярного маркера, позволяющего дифференцировать стволовые клетки от нестволовых. Рассмотрены объекты и современные методы редактирования генома. Охарактеризована иммунная система прокариот и их защитные механизмы, препятствующие целевому редактированию генома в интересах исследователя. Описаны фазы развития эмбриона, начиная с формирования гамет и зародышевых линий, различия в отборе зародышевых и соматических клеток, рассматривается образование истинных зародышевых клеток, их типы, факторы, обеспечивающие их дифференцировку и миграцию. Представлены проб лемные и перспективные сведения по использованию стволовых клеток в трансплан тологии и другие не менее интересные вопросы, касающиеся стволовых клеток. Монография предназначена биологам, физиологам, врачам, научным работникам, будет полезна преподавателям, аспирантам и студентам биологических и медицинских факультетов университетов, академий и институтов, а также широкому кругу читателей.
1. Андреева О. Е., Красильников М. А. Феномен РНК-интерференции в онкологии: достижения, проблемы и перспективы // Успехи молекулярной онкологии. 2016. Т. 3. С. 8-15. DOI: 10.17650/2313-805X-2016-3-3-08-15
2. Бигильдеев А. Е., Петинати Н. А., Дризе Н. И. Как методы молекулярной биологии повлияли на понимание устройства кроветворной системы // Молекулярная биология. 2019. Т. 53, № 5. С. 711-724. DOI: 10.1134/S0026898419050021
3. Владимирская Е. Б., Майорова О. А., Румянцев С. А. Биологические основы и перспективы терапии стволовыми клетками. М.: Медицина и здоровье, 2007. 392 с.
4. Гарбуз Д. Г., Зацепина О. Г., Евгеньев М. Б. Основной стрессовый белок человека (Hsp70) как фактор белкового гомеостаза и цитокин-подобный регулятор // Молекулярная биология. 2019. Т. 53, № 2. С. 200-217. DOI: 10.1134/ S0026898419020058
5. Горяев А. А., Савкина М. В., Мефед К. М., Бондарев В. П., Меркулов В. А., Тарасов В. В. Редактирование генома и биомедицинские клеточные продукты: современное состояние, безопасность и эффективность // БИОпрепараты. Профилактика, диагностика, лечение. 2018. Т. 18, № 3. С. 140-149. DOI: 10.30895/2221-996X-2018-18-3-140-149
6. Гринкевич Л. Н. Редактирование генома и регуляция экспрессии генов с помощью технологий CRISPR/Сas в нейробиологии // Успехи физиологических наук. 2021. Т. 52, № 3. С. 4-23. DOI: 10.31857/S0301179821030024
7. Гусев Н. Б., Богачева Н. В., Марстон С. Б. Структура и свойства малых белков теплового шока (sHsp) и их взаимодействие с белками цитоскелета // Биохимия. 2002. T. 67, № 5. C. 613-623.
8. Жарикова А. А., Миронов А. А. PiРНК: биология и биоинформатика // Молекулярная биология. 2016. Т. 50, № 1. С. 80-88. DOI: 10.7868/S0026898416010225
9. Коноплянников М. А., Кальсин В. А., Аверьянов А. В. Стволовые клетки для терапии ишемической болезни сердца: достижения и перспективы // Клиническая практика. 2012. № 3. С. 63-83.
10. Мельников Э. Э., Ротанова Т. В. Молекулярные шапероны // Биоорганическая химия. 2010. Т. 36, № 1. С. 5-14.
11. Москалев А. В., Гумилевский Б. Ю., Апчел А. В., Цыган В. Н. Стволовые клетки и их физиологические эффекты // Вестник Российской военно-медицинской академии. 2019. № 4 (68). С. 172-180.
12. Москалев А. В., Гумилевский Б. Ю., Сбойчаков В. Б. Медицинская иммунология с вопросами иммунной недостаточности и основами клинической иммунологии. СПб.: ВМедА, 2019, 327 с.
13. Москалев А. В., Гумилевский Б. Ю., Апчел А. В., Цыган В. Н. Стволовые клетки: происхождение и маркировка // Вестник Российской военно-медицинской академии. 2020. № 2 (70). С. 211-216.
14. Москалев А. В., Гумилевский Б. Ю., Апчел А. В., Цыган В. Н. Генетическая модификация и маркировка клеточных линий // Вестник Российской военно-медицинской академии. 2020. № 3 (71). С. 168-175.
15. Москалев А. В., Гумилевский Б. Ю., Апчел В. Я., Цыган В. Н. Методы изучения генетических модификаций // Вестник Российской военно-медицинской академии. 2020. № 4 (72). С. 172-182.
16. Москалев А. В., Рудой А. С., Цыган В. Н., Апчел В. Я. Аутоиммунные заболевания: диагностика и лечение. 2-е изд., перераб. и доп. М.: Гэотар-Медиа, 2020. 288 с.
17. Москалев А. В., Сбойчаков В. Б., Рудой А. С. Общая иммунология с основами клинической иммунологии. М.: Гэотар-Медиа, 2015. 351 с.
18. Москалев А. В., Гумилевский Б. Ю., Апчел В. Я., Цыган В. Н. Проблемы и перспективы использования стволовых клеток в трансплантологии // Вестник Российской военно-медицинской академии. 2021. Т. 23, № 2. С. 175-186. DOI: 10.17816/brmma.64495
19. Москалев А. В., Гумилевский Б. Ю., Апчел В. Я., Цыган В. Н. Трансдифференциация стволовых клеток. От клетки к организму // Вестник Российской военно-медицинской академии. 2021. Т. 23, № 3. С. 205-214. DOI: 10.17816/ brmma72190
20. Муранова Л. К., Рыжавская А. С., Судницына М. В., Шатов В. М., Гусев Н. Б. Малые белки теплового шока и нейродегенеративные заболевания человека // Биохимия. 2019. Т. 84, № 11. С. 1564-1577. DOI: 10.1134/S0320972519110046
21. Немудрый А. А., Валетдинова К. Р., Медведев С. П., Закиян С. М. Системы редактирования геномов TALEN и CRISPR/Cas - инструменты открытий // Acta naturae. 2014. Т. 6, № 3 (22). С. 20-42.
22. Нефедова Л. Н. Drosophila melanogaster как модель генетики развития: современные подходы и перспективы // Онтогенез. 2020. Т. 51, № 4. С. 243-253. DOI: 10.31857/S0475145020040059
23. Тигунцев В. В., Иванова С. А., Серебров В. Ю., Бухарева М. Б. Малые некодирующие РНК как перспективные биомаркеры: биогенез и терапевтические стратегии // Бюллетень сибирской медицины. 2016. Т. 15, № 2. С. 112-126. DOI: 10.20538/1682-0363-2016-2-112-126
24. Тихомирова М. М. Белки теплового шока и мутагенез // Вестник ЛГУ. Сер. 3. 1989. Вып. 2. № 10. С. 90-94.
25. Трактуев Д. О., Марч К. Л., Ткачук В. А., Парфенова Е. В. Стромальные клетки жировой ткани - мультипотентные клетки с терапевтическим потенциалом для стимуляции ангиогенеза при ишемии тканей // Кардиология. 2006. Т. 46, № 6. С. 53-63.
26. Трактуев Д. О., Парфенова Е. В., Ткачук В. Н., Марч К. Л. Стромальные клетки жировой ткани - пластический тип клеток, обладающих высоким терапевтическим потенциалом // Цитология. 2006. Т. 48, № 2. С. 83-94.
27. Юнусова А. М., Баттулин Н. Р. Методы маркирования клеток для изучения судьбы клеточных поколений // Вавиловский журнал генетики и селекции. 2016. Т. 20, № 6. С. 909-917. DOI: 10.18699/VJ16.211
28. Ярилин А. А. Иммунология. М.: Гэотар-Медиа, 2010. 957 с.
29. Abad M., Mosteiro L., Pantoja C., Canamero M., Rayon T., Ors I., Grana O., Megias D., Dominguez O., Martinez D., Manzanares M., Ortego S., Serrano M. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature. 2013. V. 502, no. 7471. P. 340-345. DOI: 10.1038/nature12586
30. Abbas A. K., Lichtman A. N., Pillai S. Cellular and molecular immunology. 9-th edition. Philadelphia, Pennsylvania: W. B. Saunders Company, 2018. 565 p.
31. Agostini M., Tucci P. , Steinert J. R., Shalom-Feuerstein R., Rouleau M., Aberdam D., Forsythe I. D., Young K. W., Ventura A., Concepcion C. P., Han Y. C., Candi E., Knight R. A., Mak T. W., Melino G. microRNA-34a regulates neurite outgrowth, spinal morphology, and function. Proceedings of the National Academy of Sciences USA. 2011. V. 108, no. 52. P. 21099-21104. DOI: 10.1073/pnas
32. Aravin A. A., Hannon G. J., Brennecke J. The Piwi-piRNA pathway provides an adaptive defense in the transposon Arms Race. Science. 2007. V. 318, no. 5851. P. 761-764. DOI: 10.1126/science.1146484
33. Aravin A., Naumova N. M., Tulin A. V., Vagin V. V., Rozovsky Y. M., Gvozdev V. A. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Current Biology. 2001. V. 11, no. 13. P. 1017-1027. DOI: 10.1016/s0960-9822(01)00299-8
34. Arnold S. J., Robertson E. J. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nature Reviews Molecular Cell Biology. 2009. V. 10, no. 2. P. 91-103. DOI: doi: 10.1038/nrm2618
35. Arrigo A. P., Fakan S., Tissieres A. Localization of the heat shock proteins in Drosophila melanogaster tissue culture cells. Developmental Biology. 1980. V. 78. P. 86-103. DOI: 10.1016/0012-1606(80)90320-6
36. Asea A., Kraeft S. K., Kurt-Jones E. A., Stevenson M. A., Chen L. B., Finberg R. W., Koo G. C., Calderwood S. K. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nature Medicine. 2000. V. 6, no. 4. P. 435-442. DOI: 10.1038/74697
37. Augui S., Nora E. P., Heard E. Regulation of X-chromosome inactivation by the X-inactivation centre. Nature Reviews Genetics. 2011. V. 12, no. 6. P. 429-442. DOI: 10.1038/nrg2987
38. Barker N., van Es J. H., Kuipers J., Kujala P., van den Born M., Cozijnsen M., Haegebarth A., Korving J., Begthel H., Peters P. J., Clevers H. Identifi cation of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007. V. 449, no. 7165. P. 1003-1007. DOI: 10.1038/nature06196
39. Barreca M. M., Spinello W., Cavalieri V., Turturici G., Sconzo G., Kaur P., Tinnirello R., Asea A. A., Geraci F. Extracellular Hsp70 enhances mesoangioblast migration via an autocrine signaling pathway. Journal of Cellular Physiology. 2017. V. 232, no. 7. P. 1845-1861. DOI: 10.1002/jcp.25722
40. Bartel D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004. V. 116, no. DOI: 2. P. 281-297. DOI: 10.1016/s0092-8674(04)00045-5
41. Bassuk A. G., Zheng A., Li Y., Tsang S. H., Mahajan V. B. Precision medicine: genetic repair of retinitis rigmentosa in ratient-derived stem cells. Scientifi c Reports. 2016. V. 6: 19969. DOI: 10.1038/srep19969
42. Beattie R., Streicher C., Amberg N., Cheung G., Contreras X., Hansen A. H., Hippenmeyer S. Lineage tracing and clonal analysis in developing cerebral cortex using mosaic analysis with double markers (MADM). Journal of Visualized Experiments. 2020. V. 159: e61147. DOI: 10.3791/61147
43. Bernstein E., Caudy A. A., Hammond S. M., Hannon G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001. V. 409, no. 6818. P. 363-366. DOI: 10.1038/35053110
44. Bhaya D., Davison M., Barrangou R. CRISPRCas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annual Review of Genetics. 2011. V. 45. P. 273-297. DOI: 10.1146/annurev-genet-110410-132430
45. Bier E., De Robertis E. M. Embryo development. BMP gradients: a paradigm for morphogen mediated developmental patterning. Science. 2015. V. 348, no. 6242: aaa5838. DOI: 10.1126/science.aaa5838
46. Bolhassani A., Agi E. Heat shock proteins in infection. Clinica Chimica Acta. 2019. V. 498. P. 90-100. DOI: 10.1016/j.cca.2019.08.015
47. Bradley E., Bieberich E., Mivechi N. F. , Tangpisuthipongsa D., Wang G. Regulation of embryonic stem cell pluripotency by heat shock protein 90. Stem Cells. 2012. V. 30, no. 8. P. 1624-1633. DOI: 10.1002/stem.1143
48. Brennecke J., Aravin A. A., Stark A., Dus M., Kellis M., Sachidanandam R., Hannon G. J. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell. 2007. V. 128, no. 6. P. 1089-1103. DOI: 10.1016/j. cell.2007.01.043
49. Bukau B., Weissman J., Horwich A. Molecular chaperones and protein quality control. Cell. 2006. V. 125, no. 3. P. 443-451. DOI: 10.1016/j.cell.2006.04.014
50. Bulic-Jakus F. , Bojanac A. K., Juric-Lekic G., Vlahovic M., Sincic N. Teratoma: from spontaneous tumors to the pluripotency/malignancy assay. Wiley Interdisciplinary Reviews: Developmental Biology. 2016. V. 5, no. 2. P. 186-209. DOI: 10.1002/ wdev.219
51. Cai L., Johnstone B. H., Cook T. G., Liang Z., Traktuev D., Cornetta K., Ingram D. A., Rosen E. D., March K. L. Suppression of hepatocyte growth factor production impairs the ability of adipose-derived stem cells to promote ischemic tissue revascularization. Stem Cells. 2007. V. 25, no. 12. P. 3234-3243. DOI: 10.1634/ stemcells.2007-0388
52. Carbery I. D., Ji D., Harrington A., Brown V., Weinstein E. J., Liaw L., Cui X. Ta rgeted genome modification in mice using zinc-finger nucleases. Genetics. 2010. V. 186, no. 2. P. 451-459. DOI: 10.1534/genetics.110.117002
53. Chang W., Song B. W., Lim S., Song H., Shim C. Y., Cha M.-J., Ahn D. H., Jung Y.-G., Lee D.-H., Chung J. H., Choi K.-D., Lee S.-K., Chung N., Lee S.-K., Jang Y., Hwang K.-C. Mesenchymal stem cells pretreated with delivered Hph-1-Hsp70 protein are protected from hypoxia-mediated cell death and rescue heart functions from myocardial injury. Stem Cells. 2009. V. 27, no. 9. P. 2283-2292. DOI: 10.1002/stem.153
54. Chattong S., Chaikomon K., Chaiya T., Tangkosakul T., Palavutitotai N., Anusornvongchai T., Manotham K. Efficient ZFN-mediated stop codon integration into the CCR5 locus in hematopoietic stem cells: a possible source for intrabone marrow cell transplantation. AIDS Research and Human Retroviruses. 2018. V. 34, no. 7. P. 575-579. DOI: 10.1089/AID.2018.0007
55. Chen B., Gilbert L. A., Cimini B. A., Schnitzbauer J., Zhang W., Li G. W., Park J., Blackburn E. H., Weissman J. S., Qi L. S., Huang B. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell. 2013. V. 155, no. 7. P. 1479-1491. DOI: 10.1016/j.cell.2013.12.001
56. Chen C. Z., Li L., Lodish H. F., Bartel D. P. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004. V. 303, no. 5654. P. 83-86. DOI: 10.1126/ science.1091903
57. Chen Y., Voegeli T. S., Liu P. P., Noble E. G., Currie R. W. Heat shock paradox and a new role of heat shock proteins and their receptors as anti-inflammation targets. Inflammation & Allergy - Drug Targets. 2007. V. 6, no. 2. P. 91-100. DOI: 10.2174/187152807780832274
58. Cheng L. C., Pastrana E., Tavazoie M., Doetsch F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nature Neuroscience. 2009. V. 12, no. 4. P. 399-408. DOI: 10.1038/nn.2294
59. Cheng Y. C., Huang C. J., Lee Y. J., Tien L. T., Ku W. C., Chien R., Lee F. K., Chien C. C. Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells. Scientifi c reports. 2016. V. 6: 30314. DOI: 10.1038/srep30314
60. Choi M. R., Jung K. H., Park J. H., Das N. D., Chung M. K., Choi I. G., Lee B. C., Park K. S., Chai Y. G. Ethanol-induced small heat shock protein genes in the differentiation of mouse embryonic neural stem cells. Archives of Toxicology. 2011. V. 85, no. 4. P. 293-304. DOI: 10.1007/s00204-010-0591-z
61. Choudhuri S. Small noncoding RNAs: biogenesis, function, and emerging significance in toxicology. Journal of Biochemical and Molecular Toxicology. 2010. V. 24, no. 3. P. 195-216. DOI: 10.1002/jbt.20325
62. Christian J. L. Morphogen gradients in development: from form to function. Wiley Interdisciplinary Reviews: Developmental Biology. 2012. V. 1, no. 1. P. 3-15. DOI: 10.1002/wdev.2
63. Copeland N. G., Jenkins N. A. Harnessing transposons for cancer gene discovery. Nature Reviews Cancer. 2010. V. 10, no. 10. P. 696-706. DOI: 10.1038/ nrc2916
64. Craven R. A., Tyson J. R., Stiding C. J. A novel subfamily of hsp70s in the endoplasmic reticulum. Trends in Cell Biology. 1997. V. 7, no. 7. P. 277-283. DOI: 10.1016/ S0962-8924(97)01079-9
65. Czerwińska P., Mazurek S., Kołodziejczak I., Wiznerowicz M. Gene delivery methods and genome editing of human pluripotent stem cells. Reports of Practical Oncology and Radiotherapy. 2019. V. 24, no. 2. P. 180-187. DOI: 10.1016/j.rpor. 2019.01.007
66. Davis M. E., Zuckerman J. E., Choi C. H., Seligson D., Tolcher A., Alabi C. A., Yen Y., Heidel J. D., Ribas A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010. V. 464, no. 7291. P. 1067-1070. DOI: 10.1038/nature08956
67. De Los Angeles A., Ferrari F., Xi R., Fujiwara Y., Benvenisty N., Deng H., Ho-chedlinger K., Jaenisch R., Lee S., Leitch H. G., Lensch M. W., Lujan E., Pei D., Rossant J., Wernig M., Park P. J., Daley G. Q. Hallmarks of pluripotency. Nature. 2015. V. 525, no. 7570. P. 469-478. DOI: 10.1038/nature15515
68. Deglincerti A., Croft G. F., Pietila L. N., Zernicka-Goetz M., Siggia E. D., Brivanlou A. H. Self-organization of the in vitro attached human embryo. Nature. 2016. V. 533, no. 7602. P. 251-254. DOI: 10.1038/nature17948
69. Ding Q., Lee Y. K., Schaefer E. A., Peters D. T., Veres A., Kim K., Kuperwasser N., Motola D. L., Meissner T. B., Hendriks W. T., Trevisan M., Gupta R. M., Moisan A., Banks E., Friesen M., Schinzel R. T., Xia F. , Tang A., Xia Y., Figueroa E., Wann A., Ahfeldt T., Daheron L., Zhang F., Rubin L. L., Peng L. F. , Chung R. T., Musunuru K., Cowan C. A. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell. 2013. V. 12, no. 2. P. 238-251. DOI: 10.1016/j.stem.2012.11.011
70. Di Rocco G., Iachininoto M. G., Tritarelli A., Straino S., Zacheo A., Germani A., Crea F., Capogrossi M. C. Myogenic potential of adipose tissue-derived cells. Journal of Cell Science. 2006. V. 119, no. 14. P. 2945-2952. DOI: 10.1242/ jcs.03029
71. Ditzel L., Lowe J., Stock D., Stetter К., Huber H., Huber R., Steinbacher S. Crystall structure of the thermosome, the Archaeal chaperonin and homolog of CCT. Cell. 1998. V. 93, no. 1. Р. 125-138. DOI: 10.1016/s0092-8674(00)81152-6
72. Dominici M., Blanc K. L., Mueller I., Cortenbach I. S., Marini F. , Krause D., Deans R., Keating A., Prockop D., Horwitz E. Minimal criteria for defi ning multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006. V. 8, no. 4. P. 315-317. DOI: 10.1080/ 14653240600855905
73. Dong Y., Siegwart D. J., Anderson D. G. Strategies, design, and chemistry in siRNA delivery systems. Advanced Drug Delivery Reviews. 2019. V. 144. P. 133-147. DOI: 10.1016/j.addr.2019.05.004
74. Dorey K., Amaya E. FGF signaling: diverse roles during early vertebrate embryogenesis. Development. 2010. V. 137, no. 22. P. 3731-3742. DOI: 10.1242/ dev.037689
75. Doyle S. M., Genest O., Wickner S. Protein rescue from aggregates by powerful molecular chaperone machines. Nature Reviews Molecular Cell Biology. 2013. V. 14, no. 10. P. 617-629. DOI: 10.1038/nrm3660
76. Duggal G., Warrier S., Ghimire S., Broekaert D., van der Jeught M., Lierman S., Deroo T., Peelman L., van Soom A., Cornelissen R., Menten B., Mestdagh P., Vandesompele J., Roost M., Slieker R. C., Heijmans B. T., Deforce D., De Sutter P., De Sousa Lopes S. C., Heindryckx B. Alternative routes to induce naïve pluripotency in human embryonic stem cells. Stem Cells. 2015. V. 33, no. 9. P. 2686-2698. DOI: 10.1002/stem.2071
77. Dunn S. J., Martello G., Yordanov B., Emmott S., Smith A. G. Defining an essential transcription factor program for naïve pluripotency. Science. 2014. V. 344, no. 6188. P. 1156-1160. DOI: 10.1126/science.1248882
78. Elbashir S. M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001. V. 411, no. 6836. P. 494-498.DOI: 10.1038/35078107
79. Eskildsen T., Taipaleenmäki H., Stenvang J., Abdallah B. M., Ditzel N., Nossent A. Y., Bak M., Kauppinen S., Kassem M. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proceedings of the National Academy of Sciences USA. 2011. V. 108, no. 15. P. 6139-6144. DOI: 10.1073/pnas.1016758108
80. Fan C. Y., Lee S., Cyr D. M. Mechanisms for regulation of hsp70 function by hsp40. Cell Stress & Chaperones. 2003. V. 8, no. 4. Р. 309-316. DOI: 10.1379/1466-1268(2003)008<0309:mfrohf>2.0.co;2
81. Feder M. E., Hofmann G. E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annual Review of Physiology. 1999. V. 61. P. 243-282. DOI: 10.1146/annurev.physiol.61.1.243
82. Fire A., Xu S., Montgomery M. K., Kostas S. A., Driver S. E., Mello C. C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998. V. 391, no. 6669. P. 806-811. DOI: 10.1038/35888
83. Fowlkes C. C., Hendriks C. L. L., Keranen S. V. E., Weber G. H., Rübel O., Huang M.-Y., Chatoor S., DePace A. H., Simirenko L., Henriquez C., Beaton A., Weiszmann R., Celniker S., Hamann B., Knowles D. W., Biggin M. D., Eisen M. B., Malik J. A quantitative spatiotemporal atlas of gene expression in the Drosophila blastoderm. Cell. 2008. V. 133, no. 2. P. 364-374. DOI: 10.1016/j.cell.2008.01.053
84. Gao F., Hu X. Y., Xie X. J., Xu Q. Y., Wang Y. P., Liu X. B., Xiang M. X., Sun Y., Wang J. A. Heat shock protein 90 protects rat mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis via the PI3K/Akt and ERK1/2pathways.Journal of Zheijang University SCIENCE B. 2010. V. 11, no. 8. P. 608- 617. DOI: 10.1631/jzus.B1001007
85. Geraghty R. J., Capes-Davis A., Davis J. M., Downward J., Freshney R. I., Knezevic I., Lovell-Badge R., Masters J. R. W., Meredith J., Stacey G. N., Thraves P., Vias M. Cancer Research UK. Guidelines for the use of cell lines in biomedical research. British Journal of Cancer. 2014. V. 111, no. 6. P. 1021-1046. DOI: 10.1038/ bjc.2014.166
86. Germini D., Tsfasman T., Zakharova V. V., Sjakste N., Lipinski M., Vassetzky Y. A comparison of techniques to evaluate the effectiveness of genome editing. Trends Biotechnology. 2018. V. 36, no. 2. P. 147-159. DOI: 10.1016/j.tibtech.2017.10.008
87. Gilbert L. A., Larson M. H., Morsut L., Liu Z., Brar G. A., Torres S. E., Stern-Ginossar N., Brandman O., Whitehead E. H., Doudna J. A., Lim W. A., Weissman J. S., Qi L. S. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013. V. 154, no. 2. P. 442-451. DOI: 10.1016/j.cell. 2013.06.044
88. Girard A., Sachidanandam R., Hannon G. J., Carmell M. A germlinespecific class of small RNAs binds mammalian Piwi proteins. Nature. 2006. V. 442, no. 7099. P. 199-202. DOI: 10.1038/nature04917
89. Gjorevski N., Ranga A., Lutolf M. P. Bioengineering approaches to guide stem cellbased organogenesis. Development. 2014. V. 141, no. 9. P. 1794-1804. DOI: 10.1242/dev.101048
90. González F., Huangfu D. Mechanisms underlying the formation of induced pluripotent stem cells. Wiley Interdisciplinary Reviews: Developmental Biology. 2016. V. 5, no. 1. P. 39-65. DOI: 10.1002/wdev.206
91. Gregory R., Chendrimada T., Cooch N., Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005. V. 123, no. 4. P. 631-640. DOI: 10.1016/j.cell.2005.10.022
92. Grimson A., Srivastava M., Fahey B., Woodcroft B. J., Chiang H. R., King N., Degnan B. M., Rokhsar D. S., Bartel D. P. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature. 2008. V. 455, no. 7217. P. 1193- 1197. DOI: 10.1038/nature07415
93. Grissa I., Vergnaud G., Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics. 2007. V. 8: 172. DOI: 10.1186/1471-2105-8-172
94. Guo L., Zhao R. C., Wu Y. The role of miRNAs in self-renewal and differentiation of mesenchymal stem cells. Experimental Hematology. 2011. V. 39, no. 6. P. 608- 616. DOI: 10.1016/j.exphem.2011.01.011
95. Gyurko D. M., Soti C., Stetak A., Csermely P. System level mechanisms of adaptation, learning, memory formation and evolvability: the role of chaperone and other networks. Current Protein & Peptide Science. 2014. V. 15, no. 3. Р. 171-188. DOI: 10.2174/1389203715666140331110522
96. Ha M., Kim V. N. Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology. 2014. V. 15, no. 8. Р. 509-524. DOI: 10.1038/nrm3838
97. Ham O., Song B. W., Lee S. Y., Choi E., Cha M. J., Lee C. Y., Park J. H., Kim I. K., Chang W., Lim S., Lee C. H., Kim S., Jang Y., Hwang K. C. The role of micro-RNA-23b in the differentiation of MSC into chondrocyte by targeting protein kinase A signaling. Biomaterials. 2012. V. 33, no. 18. P. 4500-4507. DOI: 10.1016/j.biomaterials.2012.03.025
98. Harris S. F., Shiau A. K., Agard D. A. The crystal structure of the carboxy terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Structure. 2004. V. 12, no. 6. P. 1087-1097. DOI: 10.1016/j. str.2004.03.020
99. Hartl F. U., Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science. 2002. V. 295, no. 5561. P. 1852-1858. DOI: 10.1126/ science.1068408
100. Haslbeck M., Weinkauf S., Buchner J. Small heat shock proteins: simplicity meets complexity. Journal of Biological Chemistry. 2019. V. 294, no. 6. P. 2121-2132. DOI: 10.1074/jbc.REV118.002809
101. He W., Wang Z., Wang Q., Fan Q., Shou C., Wang J., Giercksky K. E., Nesland J. M., Suo Z. Expression of HIWI in human esophageal squamous cell carcinoma is significantly associated with poorer prognosis. BMC Cancer. 2009. V. 9: 426. DOI: 10.1186/1471-2407-9-426
102. Heintze J., Luft C., Ketteler R. A CRISPR CASe for high-throughput silencing. Frontiers in Genetics. 2013. V. 4: 193. DOI: 10.3389/fgene.2013.00193
103. Hilton I. B., D’Ippolito A. M., Vockley C. M., Thakore P. I., Crawford G. E., Reddy T. E., Gersbach C. A. Epigenome editing by a CRISPR-Cas9-based acetyl transferase activates genes from promoters and enhancers. Nature Biotechnology. 2015. V. 33, no. 5. P. 510-517. DOI: 10.1038/nbt.3199
104. Hirosawa M., Fujita Y., Parr C. J. C., Hayashi K., Kashida S., Hotta A., Woltjen K., Saito H. Cell-typespecifi c genome editing with a microRNA-responsive CRISPR-Cas9 switch. Nucleic Acids Research. 2017. V. 45, no. 13: e118. DOI: 10.1093/ nar/gkx309
105. Hockemeyer D., Soldner F., Beard C., Gao Q., Mitalipova M., DeKelver R. C., Katibah G. E., Amora R., Boydston E. A., Zeitler B., Meng X., Miller J. C., Zhang L., Rebar E. J., Gregory P. D., Urnov F. D., Jaenisch R. Efficient targeting ofexpressed and silent genes in human ESCs and iPSCs usingzinc-finger nucleases. Nature Biotechnology. 2009. V. 27, no. 9. P. 851-857. DOI: 10.1038/nbt.1562
106. Hockemeyer D., Wang H., Kiani S., Lai C. S., Gao Q., Cassady J. P., Cost G. J., Zhang L., Santiago Y., Miller J. C., Zeitler B., Cherone J. M., Meng X., Hinkley S. J., Rebar E. J., Gregory P. D., Urnov F. D., Jaenisch R. Genetic engineering ofhuman ES and iPS cells using TALE nucleases. Nature Biotechnology. 2011. V. 29, no. 8. P. 731-734. DOI: 10.1038/nbt.1927
107. Horii T., Tamura D., Morita S., Kimura M., Hatada I. Generation of an ICF syndrome model by efficient genome editing of human induced pluripotent stem cells using the CRISPR system. International Journal of Molecular Sciences. 2013. V. 14, no. 10. P. 19774-19781. DOI: 10.3390/ijms141019774
108. Houdebine L.-M. Design of vectors for optimizing transgene expression. In: Pinkert C. A. (ed). Transgenic animal technology: a laboratory manual, 3rd ed. San Diego: Elsevier. 2014. P. 489-511.
109. Huang H., Tang X., Li S., Huang D., Lu D., Wu F. , Liu D., Li H. Advanced platelet-rich fi brin promotes the paracrine function and proliferation of adipose-derived stem cells and contributes to micro-autologous fat transplantation by modulating HIF-1α and VEGF. Annals of Translational Medicine’s. 2022. V. 10, no. 2: 60. DOI: 10.21037/atm-21-6812
110. Hubbard E. J. A., Schedl T. Biology of the Caenorhabditis elegans germline stem cell system. Genetics. 2019. V. 213. P. 1145-1188. DOI: 10.1534/genetics. 119.300238
111. Ingham P. W., Nakano Y., Seger C. Mechanisms and functions of Hedgehog signaling across the metazoa. Nature Reviews Genetics. 2011. V. 12, no. 6. P. 393-406. DOI: 10.1038/nrg2984
112. Jeon E. S., Song H. Y., Kim M. R., Moon H. J., Bae Y. C., Jung J. S., Kim J. H. Sphingosylphosphorylcholine induces proliferation of human adipose tissue derived mesenchymal stem cells via activation of JNK. Journal of Lipid Research. 2006. V. 47, no. 3. P. 653-664. DOI: 10.1194/jlr.M500508-JLR200
113. Jiang J., Zheng X., Xu X., Zhou Q., Yan H., Zhang X., Lu B., Wu C., Ju J. Prognostic significance of miR-181b and miR-21 in gastric cancer patients treated with S-1/ Oxaliplatin or Doxifl uridine/Oxaliplatin. PLoS One. 2011. V. 6, no. 8: e23271. DOI: 10.1371/journal. pone.0023271
114. Jin C., Shuai T., Tang Z. HSPB7 regulates osteogenic differentiation of human adipose derived stem cells via ERK signaling pathway. Stem Cell Research & Therapy. 2020. V. 11, no. 1: 450. DOI: 10.1186/s13287-020-01965-4
115. Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012. V. 337, no. 6096. P. 816-821. DOI: 10.1126/science.1225829
116. Joshi P. M., Riddle M. R., Djabrayan N. J. V. , Rothman J. H. Caenorhabditis elegans as a Model for Stem Cell Biology. Developmental dynamics. 2010. V. 239. P. 1539-1554. DOI: 10.1002/dvdy.22296
117. Junker J. P., Spanjaard B., Peterson-Maduro J., Alemany A., Hu B., Florescu M., van Oudenaarden A. Massively parallel whole-organism lineage tracing using CRISPR/Cas9 induced genetic scars. BioRxiv. 2016. DOI: 10.1101/056499
118. Katic I., Grosshans H. Targeted heritable mutation and gene conversion by Cas9-CRISPR in Caenorhabditis elegans. Genetics. 2013. V. 195, no. 3. P. 1173-1176. DOI: 10.1534/genetics.113.155754
119. Kampinga H. H., Craig E. A. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nature Reviews Molecular Cell Biology. 2010. V. 11, no. 8. P. 579-592. DOI: 10.1038/nrm2941
120. Kane N. S., Vora M., Varre K. J., Padgett R. W. Efficient screening of crispr/cas9-induced events in Drosophila using a co-CRISPR strategy. G3: Genes, Genomes, Genetics. 2017. V. 7. P. 87-93. DOI: 10.1534/g3.116.036723
121. Kang H. W., Lee S. J., Ko I. K., Kengla C., Yoo J. J., Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nature Biotechnology. 2016. V. 34, no. 3. P. 312-319. DOI: 10.1038/nbt.3413
122. Karaiskos N., Wahle P. , Alles J., Boltengagen A., Ayoub S., Kipar C., Kocks C., Rajewsky N., Zinzen R. P. The Drosophila embryo at single-cell transcriptome resolution. Science. 2017. V. 358, no. 6360. P. 194-199. DOI: 10.1126/science. aan3235
123. Kataria N., Kerr B., Zaiter S. S., McAlpine S., Cook K. M. C-terminal HSP90 inhibitors block the HSP90:HIF-1α interaction and inhibit the cellular hypoxic response. BioRxiv. 2019. DOI: 10.1101/521989
124. Kennedy D., Jäger R., Mosser D. D., Samali A. Regulation of apoptosis by heat shock proteins. IUBMB Life. 2014. V. 66, no. 5. P. 327-338. DOI: 10.1002/iub.1274
125. Kern S., Eichler H., Stoeve J., Klüter H., Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006. V. 24, no. 5. P. 1294-1301. DOI: 10.1634/stemcells.2005-0342
126. Kim H. J., Kim M. H., Kim J. T., Lee W. J., Kim E., Lim K. S., Kim J. K., Yang Y. I., Park K. D., Kim Y. H. Intracellular transduction of TAT-Hsp27 fusion protein enhancing cell survival and regeneration capacity of cardiac stem cells in acute myocardial infarction. Journal of Controlled Release. 2015. V. 215. P. 55-72. DOI: 10.1016/j.jconrel.2015.07.026
127. Kim V. N. RNA interference in functional genomics and medicine. Journal of Korean Medical Science. 2003. V. 18, no. 3. P. 309-318. DOI: 10.3346/jkms. 2003.18.3.309
128. Kimble J., Seidel H. C. elegans germline stem cells and their niche. StemBook. Cambridge (MA): Harvard Stem Cell Institute. 2013. V. 12. DOI: 10.3824/ stembook.1.95.1
129. Kimelman D., Martin B. L. Anterior-posterior patterning in early development: three strategies. Wiley Interdisciplinary Reviews: Developmental Biology. 2012. V. 1, no. 2. P. 253-266. DOI: 10.1002/wdev.25
130. Kirino Y., Mourelatos Z. 2'-O-methyl modifi cation in mouse piRNAs and its methy-lase. Nucleic Acids Symposium Series (Oxford). 2007. V. 51. P. 417-418. DOI: 10.1093/nass/nrm209
131. Kopan R., Ilagan M. X. G. The canonical notch signaling pathway: unfolding the activation mechanism. Cell. 2009. V. 137, no. 2. P. 216-233. DOI: 10.1016/j. cell.2009.03.045
132. Kosano H., Stensgard B., Charlesworth M. C., McMahon N., Toft D. The assembly of progesterone receptor-hsp90 complexes using purifi ed proteins. Journal of Biological Chemistry. 1998. V. 273, no. 49. Р. 32973-32979. DOI: 10.1074/ jbc.273.49.32973
133. Krohn-Grimberghe M., Mitchell M. L., Schloss M. J., Khan O. F., Courties G., Guimaraes P. P. G., Rohde D., Cremer S., Kowalski P. S., Sun Y., Tan M., Webster J., Wang K., Iwamoto Y., Schmidt S. P., Wojtkiewicz G. R., Nayar R., Frodermann V., Hulsmans M., Chung A., Hoyer F. F., Swirski F. K., Langer R., Anderson D. G., Nahrendorf M. Nanoparticle-encapsulated siRNAs for gene silencing in the haematopoietic stem-cell niche. Nature Biomedical Engineering. 2020. V. 4, no. 11. P. 1076-1089. DOI: 10.1038/s41551-020-00623-7
134. Kwarteng A., Ahuno S. T., Kwakye-Nuako G. The therapeutic landscape of HIV-1 via genome editing. AIDS Research and Therapy. 2017. V. 14: 32. DOI: 10.1186/ s12981-017-0157-8
135. Laskey R. A., Honda B. M., Mills A. D., Finch J. T. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature. 1978. V. 275, no. 5679. P. 416-420. DOI: 10.1038/275416a0
136. Lee A. S. Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential. Nature Reviews Cancer. 2014. V. 14, no. 4. P. 263-276. DOI: 10.1038/nrc3701
137. Lee J. H., Kemp D. M. Human adipose-derived stem cells display myogenic potential and perturbed function in hypoxic conditions. Biochemical and Biophysical Research Communications. 2006. V. 341, no. 3. P. 882-888. DOI: 10.1016/j. bbrc.2006.01.038
138. Lee J. H., Schutte D., Wulf G., Fuzesi L., Radzun H. J., Schweyer S., Engel W., Nayernia K. Stem-cell protein Piwil2 is widely expressed in tumors and inhibits apoptosis through activation of Stat3/Bcl-XL pathway. Human Molecular Genetics. 2006. V. 15, no. 2. P. 201-211. DOI: 10.1093/hmg/ddi430
139. Lee R. C., Feinbaum R. L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993. V. 75, no. 5. P. 843-854. DOI: 10.1016/0092-8674(93)90529-y
140. Lee Y., Kim M., Han J., Yeom K. H., Lee S., Baek S. H., Kim V. N. MicroRNA genes are transcribed by RNA polymerase II. EMBO Journal. 2004. V. 23, no. 20. P. 4051-4060. DOI: 10.1038/sj.emboj.7600385
141. Li B., Zeng Q., Wang H., Shao S., Mao X., Zhang F. , Li S., Guo Z. Adipose tissue stromal cells transplantation in rats of acute myocardial infarction. Coronary Artery Disease. 2007. V. 18, no. 3. P. 221-227. DOI: 10.1097/MCA. 0b013e32801235da
142. Li J., Soroka J., Buchner J. The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochimica et Biophysica Acta. 2012. V. 1823, no. 3. P. 624-635. DOI: 10.1016/j.bbamcr.2011.09.003
143. Li N., Long B., Han W., Yuan S., Wang K. microRNAs: important regulators of stem cells. Stem Cell Research & Therapy. 2017. V. 8, no. 1: 110. DOI: 10.1186/ s13287-017-0551-0
144. Li W., Teng F. , Li T., Zhou Q. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nature Biotechnology. 2013. V. 31, no 8. P. 684-686. DOI: 10.1038/nbt.2652
145. Li W., Tsen F., Sahu D., Bhatia A., Chen M., Multhoff G., Woodley D. T. Extracellular Hsp90 (eHsp90) as the actual target in clinical trials: intentionally or unintentionally. International Review of Cell and Molecular Biology. 2013. V. 303. P. 203-235. DOI: 10.1016/B978-0-12-407697-6.00005-2
146. Li Z., Yang C. S., Nakashima K., Rana T. M. Small RNA-mediated regulation of iPS cell generation. EMBO Journal. 2011. V. 30, no. 5. P. 823-34. DOI: 10.1038/ emboj.2011.2
147. Lindquist S. The heat response. Annual Review of Biochemistry. 1986. V. 55. P. 1151- 1191. DOI: 10.1146/annurev.bi.55.070186.005443
148. Lindquist S., Kim G. Heat-shock protein 104 expression is sufficient for thermotolerance in yeast. Proceedings of the National Academy of Sciences USA. 1996. V. 93, no. 11. P. 5301-5306. DOI: 10.1073/pnas.93.11.5301
149. Lipinski M. J., Biondi-Zoccai G. G., Abbate A., Khianey R., Sheiban I., Bartunek J., Vanderheyden M., Kim H. S., Kang H. J., Strauer B. E., Vetrovec G. W. Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta-analysis of controlled clinical trials. Journal of the American College of Cardiology. 2007. V. 50, no. 18. P. 1761-1767. DOI: 10.1016/j.jacc.2007.07.041
150. Lippman Z., Gendrel A. V., Black M., Vaughn M. W., Dedhia N., McCombie W. R., Lavine K., Mittal V., May B., Kasschau K. D., Carrington J. C., Doerge R. W., Colot V., Martienssen R. Role of transposable elements in heterochromatin and epigenetic control. Nature. 2004. V. 430, no. 6998. P. 471-476. DOI: 10.1038/ nature02651
151. Liu J. L., Jiang L., Lin Q. X., Deng C. Y., Mai L. P., Zhu J. N., Li X. H., Yu X. Y., Lin S. G., Shan Z. X. MicroRNA 16 enhances differentiation of human bone marrow mesenchymal stem cells in a cardiac niche toward myogenic phenotypes in vitro. Life Science. 2012. V. 90, no. 25-26. P. 1020-1026. DOI: 10.1016/j. lfs.2012.05.011
152. Liu N., Zang R., Yang S. T., Li. Y. Stem cell engineering in bioreactors for large-scale bioprocessing. Engineering in Life Sciences. 2014. V. 14, no. 1. P. 4-15. DOI: 10.1002/elsc.201300013
153. Lo T. W., Pickle C. S., Lin S., Ralston E. J., Gurling M., Schartner C. M., Bian Q., Doudna J. A., Meyer B. J. Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions. Genetics. 2013. V. 195, no. 2. P. 331-348. DOI: 10.1534/genetics. 113.155382
154. Lombardo A., Genovese P. , Beausejour C. M., Colleoni S., Lee Y. L., Kim K. A., Ando D., Urnov F. D., Galli C., Gregory P. D., Holmes M. C., Naldini L. Gene editingin human stem cells using zinc finger nucleases andintegrase defective lentiviral vector delivery. Nature Biotechnology. 2007. V. 25, no. 11. P. 1298-1306. DOI: 10.1038/nbt1353
155. Lukic S., Chen K. Human piRNAs are under selection in Africans and repress transposable elements. Molecular Biology and Evolution. 2011. V. 28, no. 11. P. 3061- 3067. DOI: doi: 10.1093/molbev/msr141
156. Luinenburg D. G., de Haan G. MicroRNAs in hematopoietic stem cell aging. Mechanisms of Ageing and Development. 2020. V. 189: 111281. DOI: 10.1016/j. mad.2020.111281
157. Ma H., Morey R., O’Neil R. C., He Y., Daughtry B., Schultz M. D., Hariharan M., Nery J. R., Castanon R., Sabatini K., Thiagarajan R. D., Tachibana M., Kang E., Tippner-Hedges R., Ahmed R., Gutierrez N. M., van Dyken C., Polat A., Sugawara A., Sparman M., Gokhale S., Amato P. , Wolf D. P. , Ecker J. R., Laurent L. C., Mitalipov S. Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature. 2014. V. 511, no. 7508. P. 177-183. DOI: 10.1038/na-ture13551
158. Ma N., Liao B., Zhang H., Wang L., Shan Y., Xue Y., Huang K., Chen S., Zhou X., Chen Y., Pei D., Pan G. Transcription activator-likeeffector nuclease (TALEN)-mediated gene correction inintegration-free beta-thalassemia induced pluripotent stem cells. Journal of Biological Chemistry. 2013. V. 288, no. 48. P. 34671-34679. DOI: 10.1074/jbc.M113.496174
159. Ma Y., Zhang L., Huang X. Building Cre Knockin rat lines using CRISPR/Cas9. Methods in Molecular Biology. 2017. V. 1642. P. 37-52. DOI: 10.1007/978-1-4939-7169-5_3
160. Macario A. J. Heat-shock proteins and molecular chaperones: implications for pathogenesis, diagnostics, and therapeutics. International Journal of Clinical and Laboratory Research. 1995. V. 25, no. 2. P. 59-70. DOI: 10.1007/BF02592359
161. Makarova K. S., Haft D. H., Barrangou R., Brouns S. J., Charpentier E., Horvath P. , Moineau S., Mojica F. J., Wolf Y. I., Yakunin A. F., van der Oost J., Koonin E. V. Evolution and classifi cation of the CRISPR-Cas systems. Nature Reviews Microbiology. 2011. V. 9, no. 6. P. 467-477. DOI: 10.1038/nrmicro2577
162. Macosko E. Z., Basu A., Satija R., Nemesh J., Shekhar K., Goldman M., Tirosh I., Bialas A. R., Kamitaki N., Martersteck E. M., Trombetta J. J., Weitz D. A., Sanes J. R., Shalek A. K., Regev A., McCarroll S. A. Highly parallel genome-wide expression profi ling of individual cells using nanoliter droplets. Cell. 2015. V. 161, no. 5. P. 1202-1214. DOI: 10.1016/j.cell.2015.05.002
163. Manotham K., Chattong S., Setpakdee A. Generation of CCR5-defective CD34 cells from ZFN-driven stop codon-integrated mesenchymal stem cell clones. Journal of Biomedical Sciences. 2015. V. 22, no. 1. P. 25. DOI: 10.1186/s12929-015-0130-6
164. Mattick J. S. A new pardigm for developmental biology. Journal of Experimental Biology. 2007. V. 210, no. 9. P. 1526-1547. DOI: 10.1242/jeb.005017
165. Mayer M. P. Gymnastics of molecular chaperones. Molecular Cell. 2010. V. 39, no. 3. P. 321-331. DOI: 10.1016/j.molcel.2010.07.012
166. McDonald J. I., Celik H., Rois L. E., Fishberger G., Fowler T., Rees R., Kramer A., Martens A., Edwards J. R., Challen G. A. Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biology Open. 2016. V. 5, no. 6. P. 866-874. DOI: 10.1242/bio.019067
167. McKenna A., Findlay G. M., Gagnon J. A., Horwitz M. S., Schier A. F., Shendure J. Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science. 2016. V. 353, no. 6298: aaf7907. DOI: 10.1126/science.aaf7907
168. Miyahara Y., Nagaya N., Kataoka M., Yanagawa B., Tanaka K., Hao H., Ishino K., Ishida H., Shimizu T., Kangawa K., Sano S., Okano T., Kitamura S., Mori H. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nature Medicine. 2006. V. 12, no. 4. P. 459-465. DOI: 10.1038/ nm1391
169. Morimoto R. I. Regulation of heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones and negative regulators. Genes & Development. 1998. V. 12, no. 24. P. 3788-3796. DOI: 10.1101/ gad.12.24.3788
170. Mymrikov E. V., Seit-Nebi A. S., Gusev N. B. Large potentials of small heat shock proteins. Physiological Reviews. 2011. V. 91, no. 4. P. 1123-1159. DOI: 10.1152/ physrev.00023.2010
171. Nakagami H., Morishita R., Kaneda Y., Kikuchi Y., Ogihara T., Kaneda Y. Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. Journal of Atherosclerosis and Thrombosis. 2006. V. 13, no. 2. P. 77-81. DOI: 10.5551/ jat.13.77
172. Napoli C., Lemieux C., Jorgensen R. Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell. 1990. V. 2, no. 4. P. 279-289. DOI: 10.1105/tpc.2.4.279
173. Nelson R. J., Ziegelhoffer T., Nicolet C., Werner-Washburne M., Craig E. A. The translation machinery and 70kd heat shock protein cooperate in protein synthesis. Cell. 1992. V. 71, no. 1. P. 97-105. DOI: 10.1016/0092-8674(92)90269-i
174. Nichols J., Smith A. The origin and identity of embryonic stem cells. Development. 2011. V. 138, no. 1. P. 3-8. DOI: 10.1242/dev.050831
175. Nollen E. A., Morimoto R. I. Chaperoning signaling pathways: molecular chaperones as stress-sensing ‘heat shock’ proteins. Journal of Cell Science. 2002. V. 115, no. 14. P. 2809-2816. DOI: 10.1242/jcs.115.14.2809
176. Nomikos M., Swann K., Lai F. A. Starting a new life: sperm PLC-zeta mobilizes the Ca2+ signal that induces egg activation and embryo development: an essential phospholipase C with implications for male infertility. Bioessays. 2012. V. 34, no. 2. P. 126-134. DOI: 10.1002/bies.201100127
177. Olson K., De Nardin E. Contemporary clinical immunology and serology. New Jersey: Upper Saddle River, 2013. 439 p.
178. Ozair M. Z., Kintner C., Brivanlou A. H. Neural induction and early patterning in vertebrates. Wiley Interdisciplinary Reviews: Developmental Biology. 2013. V. 2, no. 4. P. 479-498. DOI: 10.1002/wdev.90
179. Pei W., Feyerabend T. B., Rossler J., Wang X., Postrach D., Busch K., Rode I., Klapproth K., Dietlein N., Quedenau C., Chen W., Sauer S., Wolf S., Höfer T., Rodewald H. R. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature. 2017. V. 548, no. 7668. P. 456-460. DOI: 10.1038/nature23653
180. Pelham H. R. B. Hsp70 accelerates the recovery of nucleolar morphology after heat shock. EMBO Journal. 1984. V. 3, no. 13. P. 3095-3100. PMID: 6441707
181. Port F., Chen H. M., Lee T., Bullock S. L. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proceedings of the National Academy of Sciences USA. 2014. V. 111, no. 29. P. E2967-E2976. DOI: 10.1073/pnas.1405500111
182. Pressman S., Reinke C. A., Wang X., Carthew R. W. A systematic genetic screen to dissect the microRNA pathway in Drosophila. G3: Genes, Genomes, Genetics (Bethesda). 2012. V. 2, no. 4. P. 437-448. DOI: 10.1534/g3.112.002030
183. Prinsloo E., Setati M. M., Longshaw V. M., Blatch G. L. Chaperoning stem cells: a role for heat shock proteins in the modulation of stem cell self-renewal and differentiation? BioEssays. 2009. V. 31, no. 4. P. 370-377. DOI: 10.1002/ bies.200800158
184. Rajasethupathy P. , Antonov I., Sheridan R., Frey S., Sander C., Tuschl T., Kan-del E. R. A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell. 2012. V. 149, no. 3. P. 693-707. DOI: 10.1016/j. cell.2012.02.057
185. Reeg S., Jung T., Castro J. P., Davies K. J. A., Henze A., Grune T. The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome. Free Radical Biology and Medicine. 2016. V. 99. P. 153-166. DOI: 10.1016/j.freeradbiomed.2016.08.002
186. Ren X., Sun J., Housden B. E., Hu Y., Roesel C., Liu L. P., Yang Z., Mao D., Sun L., Wu Q., Ji J. Y., Xi J., Mohr S. E., Xu J., Perrimon N., Ni J. Q. Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9. Proceedings of the National Academy of Sciences USA. 2013. V. 110, no. 47. P. 19012-19017. DOI: 10.1073/pnas.1318481110
187. Rhinn M., Dolle P. Retinoic acid signaling during development. Development. 2012. V. 139, no. 5. P. 843-858. DOI: 10.1242/dev.065938
188. Richardson B. E., Lehmann R. Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nature Reviews Molecular Cell Biology. 2010. V. 11, no. 1. P. 37-49. DOI: 10.1038/nrm2815
189. Richter K., Haslbeck M., Buchner J. The heat shock response: life on the verge of death. Molecular Cell. 2010. V. 40, no. 2. P. 253-266. DOI: 10.1016/j.mol-cel.2010.10.006
190. Ripoli A., Rainaldi G., Rizzo M., Mercatanti A., Pitto L. The fuzzy logic of mi-croRNA regulation: a key to control cell complexity. Current Genomics. 2010. V. 11, no 5. P. 350-353. DOI: 10.2174/138920210791616707
191. Rose N. R., Mackay I. R. The autoimmune diseases. 5th edition. Philadelphia: Elsevier, 2014. 1267 p.
192. Rossant J., Tam P. P. L. New insights into early human development: lessons for stem cell derivation and differentiation. Cell Stem Cell. 2017. V. 20, no. 1. P. 18-28. DOI: 10.1016/j.stem.2016.12.004
193. Ruby J. G., Jan C. H., Bartel D. P. Intronic microRNA precursors that bypass Drosha processing. Nature. 2007. V. 448, no. 7149. P. 83-86. DOI: 10.1038/nature05983
194. Ruden D. M., Lu X. Hsp90 affecting chromatin remodeling might explain transgenerational epigenetic inheritance in Drosophila. Current Genomics. 2008. V. 9, no. 7. P. 500-508. DOI: 10.2174/138920208786241207
195. Ryan B. M., Robles A. I., Harris C. C. Genetic variation in microRNA networks: the implications for cancer research. Nature Reviews Cancer. 2010. V. 10, no. 6. P. 389-402. DOI: 10.1038/nrc2867
196. Saito F. H., Damasceno D. C., Dallaqua B., Linhares I. M., Rudge M. V., De Mattos Paranhos Calderon I., Witkin S. S. Heat shock protein production and immunity and altered fetal development in diabetic pregnant rats. Cell Stress Chaperones. 2013. V. 18, no. 1. P. 25-33. DOI: 10.1007/s12192-012-0353-3
197. Saibil H. R. Chaperone machines in action. Current Opinion in Structural Biology. 2008. V. 18, no. 1. P. 35-42. DOI: 10.1016/j.sbi.2007.11.006
198. Sasai Y. Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell. 2013. V. 12, no. 5. P. 520-530. DOI: 10.1016/j. stem.2013.04.009
199. Sasaki K., Nakamura T., Okamoto I., Yabuta Y., Iwatani C., Tsuchiya H., Seita Y., Nakamura S., Shiraki N., Takakuwa T., Yamamoto T., Saitou M. The germ cell fate of cynomolgus monkeys is specified in the nascent amnion. Developmental Cell. 2016. V. 39, no. 2. P. 169-185. DOI: 10.1016/j.devcel.2016.09.007
200. Sawarkar R., Paro R. Hsp90@chromatin.nucleus: an emerging hub of a networker. Trends in Cell Biology. 2013. V. 23, no. 4. P. 193-201. DOI: 10.1016/j.tcb. 2012.11.007
201. Schaffler A., Buchler C. Concise review: adipose tissue derived stromal cells - basic and clinical implications for novel cell-based therapies. Stem Cells. 2007. V. 25, no. 4. P. 818-827. DOI: 10.1634/stemcells.2006-0589
202. Schwank G., Koo B. K., Sasselli V., Dekkers J. F., Heo I., Demircan T., Sasaki N., Boymans S., Cuppen E., van der Ent C. K., Nieuwenhuis E. E., Beekman J. M., Clevers H. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fi brosis patients. Cell Stem Cell. 2013. V. 13, no. 6. P. 653-658. DOI: 10.1016/j.stem.2013.11.002
203. Seo N. H., Lee E. H., Seo J. H., Song H. R., Han M. K. HSP60 is required for stemness and proper differentiation of mouse embryonic stem cells. Experimental & Molecular Medicine. 2018. V. 50, no. 3: e459. DOI: 10.1038/emm.2017.299
204. Shalem O., Sanjana N. E., Hartenian E., Shi X., Scott D. A., Mikkelsen T. S., Heckl D., Ebert B. L., Root D. E., Doench J. G., Zhang F. Genome-scale CRISPR-Cas9 knockout screening in human cells Science. 2014. V. 343, no. 6166. P. 84-87. DOI: 10.1126/science.1247005
205. Sharma D., Masison D. C. Hsp70 structure, function, regulation and influence on yeast prions. Protein & Peptide Letters. 2009. V. 16, no. 6. P. 571-581. DOI: 10.2174/092986609788490230
206. Shen M. M. Nodal signaling: developmental roles and regulation. Development. 2007. V. 134, no. 6. P. 1023-1034. DOI: 10.1242/dev.000166
207. Sheng Y., Previti C. Genomic features and computational identification of human microRNAs under long-range developmental regulation. BMC Genomics. 2011. V. 12: 270. DOI: 10.1186/1471-2164-12-270
208. Sgro A., Blancafort P. Epigenome engineering new technologies for precision medicine. Nucleic Acids Research. 2020. V. 48, no. 22. P. 12453-12482. DOI: 10.1093/ nar/gkaa1000
209. Silva M., Daheron L., Hurley H., Bure K., Barker R., Carr A. J., Williams D., Kim H. W., French A., Coffey P. J., Cooper-White J. J., Reeve B., Rao M., Snyder E. Y., Ng K. S., Mead B. E., Smith J. A., Karp J. M., Brindley D. A., Wall I. Generating iPSCs: translating cell reprogramming science into scalable and robust biomanufacturing strategies. Cell Stem Cell. 2015. V. 16, no. 1. P. 13-17. DOI: 10.1016/j.stem.2014.12.013
210. Sinkkonen L., Hugenschmidt T., Berninger P., Gaidatzis D., Mohn F. , Artus-Revel C. G., Zavolan M., Svoboda P. , Filipowicz W. MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nature Structural & Molecular Biology. 2008. V. 15, no. 3. P. 259-67. DOI: 10.1038/nsmb.1391
211. Siomi M. C., Sato K., Pezic D., Aravin A. PIWIinteracting small RNAs: the vanguard of genome defence. Nature Reviews Molecular Cell Biology. 2011. V. 12, no. 4. P. 246-258. DOI: 10.1038/nrm3089
212. Slack J. M. W. Establishment of spatial pattern. Wiley Interdisciplinary Reviews: Developmental Biology. 2014. V. 3, no. 6. P. 379-388. DOI: 10.1002/wdev.144
213. Slack J. M. W. The science of stem cells. New Jersey: Wiley, 2018. 272 p.
214. Smith P., Adams W., Lipschitz A., Chau B., Sorokin E., Rohrich R. J., Brown S. A. Autologous human fat grafting: effect of harvesting and preparation techniques on adipocyte graft survival. Plastic and Reconstructive Surgery. 2006. V. 117, no. 6. P. 1836-1844. DOI: 10.1097/01.prs.0000218825.77014.78
215. Smith J. R., Maguire S., Davis L. A., Alexander M., Yang F., Chandran S., Ffrench-Constant C., Pedersen R. A. Robust, persistent transgene expression in human embryonic stem cells is achieved with AAVS1-targeted integration. Stem Cells. 2008. V. 26, no. 2. P. 496-504. DOI: 10.1634/stemcells.2007-0039
216. Sohni A., Verfaillie C. M. Multipotent adult progenitor cells. Best Practice & Research Clinical Haematology. 2011. V. 24, no. 1. P. 3-11. DOI: 10.1016/j.beha.2011.01.006
217. Stadtfeld M., Hochedlinger K. Induced pluripotency: history, mechanisms, and applications. Genes & Development. 2010. V. 24, no. 20. P. 2239-2263. DOI: 10.1101/gad.1963910
218. Sternberg S. H., Redding S., Jinek M., Greene E. C., Doudna J. A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature. 2014. V. 507, no. 7490. P. 62-67. DOI: 10.1038/nature13011
219. Sterrenberg J. N., Blatch G. L., Edkins A. L. Human DNAJ in cancer and stem cells. Cancer letters. 2011. V. 312, no. 2. P. 129-142. DOI: 10.1016/j.canlet.2011.08.019
220. Tachibana M., Amato P., Sparman M., Gutierrez N. M., Tippner-Hedges R., Ma H., Kang E., Fulati A., Lee H. S., Sritanaudomchai H., Masterson K., Larson J.,
221. Eaton D., Sadler-Fredd K., Battaglia D., Lee D., Wu D., Jensen J., Patton P., Gokhale S., Stouffer R. L., Wolf D., Mitalipov S. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell. 2013. V. 153, no. 6. P. 1228-1238. DOI: 10.1016/j.cell.2013.05.006
222. Takahashi K. H., Rako L., Takano-Shimizu T., Hoffmann A. A., Lee S. F. Effects of small Hsp genes on developmental stability and microenvironmental canalization. BMC Ecology and Evolution. 2010. V. 10: 284. DOI: 10.1186/1471-2148-10-284
223. Takaoka K., Hamada H. Cell fate decisions and axis determination in the early mouse embryo. Development. 2012. V. 139, no. 1. P. 3-14. DOI: 10.1242/dev.060095
224. Tamm C., Pijuan Galitó S., Annerén C. A comparative study of protocols for mouse embryonic stem cell culturing. PLoS One. 2013. V. 8, no. 12: e81156. DOI: 10.1371/journal.pone.0081156
225. Thakore P. I., D’Ippolito A. M., Song L., Safi A., Shivakumar N. K., Kabadi A. M., Reddy T. E., Crawford G. E., Gersbach C. A. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nature Methods. 2015. V. 12, no. 12. P. 1143-1149. DOI: 10.1038/nmeth.3630
226. Thiruvalluvan A., de Mattos E. P. , Brunsting J. F. , Bakels R., Serlidaki D., Barazzuol L., Conforti P., Fatima A., Koyuncu S., Cattaneo E., Vilchez D., Bergink S., Boddeke E. H. W. G., Copray S., Kampinga H. H. DNAJB6, a key factor in neuronal sensitivity to amyloidogenesis. Molecular Cell. 2020. V. 78, no. 2. P. 346-358. DOI: 10.1016/j.molcel.2020.02.022
227. Timper K., Seboek D., Zulewski H., Linscheid P. , Christ-Crain M., Keller U., Müller B., Zulewski H. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glueagon expressing cells. Biochemical and Biophysical Research Communications. 2006. V. 341, no. 4. P. 1135-1140. DOI: 10.1016/j.bbrc.2006.01.072
228. Traktuev D. O., Merfeld-Clauss S., Li J., Kolonin M., Arap W., Pasqualini R., Johnstone B. H., March K. L. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circulation Research. 2008. V. 102, no. 1. P. 77-85. DOI: 10.1161/CIRCRESAHA.107.159475
229. Turturici G., Geraci F. , Candela M. E., Cossu G., Giudice G., Sconzo G. Hsp70 is required for optimal cell proliferation in mouse A6 mesoangioblast stem cells. Biochemical Journal. 2009. V. 421, no. 2. P. 193-200. DOI: 10.1042/BJ20082309
230. Urnov F. D., Rebar E. J., Holmes M. C., Zhang H. S., Gregory P. D. Genome editing with engineered zinc fi nger nucleases. Nature Reviews Genetics. 2010. V. 11, no. 9. P. 636-646. DOI: 10.1038/nrg2842
231. Valina C., Pinkernell K., Song Y. H., Bai X., Sadat S., Campeau R. J., Le Jemtel T. H., Alt E. Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodeling after acute myocardial infarction. European Heart Journal. 2007. V. 28, no. 21. P. 2667-2677. DOI: 10.1093/eurheartj/ehm426
232. van Amerongen R., Nusse R. Towards an integrated view of Wnt signaling in development. Development. 2009. V. 136, no. 19. P. 3205-3214. DOI: 10.1242/ dev.033910
233. van der Krol A. R., Mur L. A., Beld M., Mol J. N., Stuitje A. R. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell. 1990. V. 2, no. 4. P. 291-299. DOI: 10.1105/ tpc.2.4.291
234. Vogt S., Portig I., Irqsusi M., Ruppert V., Weber P., Ramzan R. Heat shock protein expression and change of cytochrome c oxidase activity: presence of two phylogenic old systems to protect tissues in ischemia and reperfusion. Journal of Bioenergetics and Biomembranes. 2011. V. 43, no. 4. Р. 425-435. DOI: 10.1007/ s10863-011-9367-2
235. Wang H., Yang H., Shivalia S. C., Dawlaty M. M., Cheng W. A., Zhang F., Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/ Cas-mediated genome engineering. Cell. 2013. V. 153, no. 4. P. 910-918. DOI: 10.1016/j.cell.2013.04.025
236. Wang Q., Li X., Wang Q., Xie J., Xie C., Fu X. Heat shock pretreatment improves mesenchymal stem cell viability by heat shock proteins and autophagy to prevent cisplatin-induced granulosa cell apoptosis. Stem Cell Research & Therapy. 2019. V. 10, no. 1: 348. DOI: 10.1186/s13287-019-1425-4
237. Wang T., Wei J. J., Sabatini D. M., Lander E. S. Genetic screens in human cells using the CRISPR-Cas9 system. Science. 2014. V. 343, no. 6166. P. 80-84. DOI: 10.1126/science.1246981
238. Wang T.-F., Chang J., Wang A. Identification of the peptide binding domain of hsc70. 18-kilodalton fragment located immediately after ATPase domain is sufficient for high affinity binding. Journal of Biological Chemistry. 1993. V. 268, no. 35. P. 26049-26051. PMID: 8253714
239. Whitesell L., Sutphin P. D., Pulcini E. J., Martinez J. D., Cook P. H. The physical assotiation of multiple molecular chaperone proteins with mutant p53 is altered by geldanamycin, an HSP90-binding agent. Molecular and Cellular Biology. 1998. V. 18, no. 3. Р. 1517-1524. DOI: 10.1073/pnas.90.15.7074
240. Wu S.-H., Lee J.-H., Koo B.-K. Lineage tracing: computational reconstruction goes beyond the limit of imaging. Molecules and Cells. 2019. V. 42, no. 2. P. 104-112. DOI: 10.14348/molcells.2019.0006
241. Wu Y., Chen L., Scott P. G., Tredget E. E. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells. 2007. V. 25, no. 10. P. 2648-2659. DOI: 10.1634/stemcells.2007-0226
242. Wu Y., Liang D., Wang Y., Bai M., Tang W., Bao S., Yan Z., Li D., Li J. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell. 2013. V. 13, no. 6. P. 659-662. DOI: 10.1016/j.stem.2013.10.016
243. Xu N., Papagiannakopoulos T., Pan G., Thomson J. A., Kosik K. S. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell. 2009. V. 137, no. 4. P. 647-658. DOI: 10.1016/j.cell. 2009.02.038
244. Yahata N., Matsumoto Y., Omi M., Yamamoto N., Hata R. TALEN-mediated shift of mitochondrial DNA heteroplasmyin MELAS-iPSCs with m.13513G>A mutation. Scientific Reports. 2017. V. 7, no. 1: 15557. DOI: 10.1038/s41598-017-15871-y
245. Yamada Y., Wang X. D., Yokoyama S., Fukuda N., Takakura N. Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium. Biochemical and Biophysical Research Communications. 2006. V. 342, no. 2. P. 662-670. DOI: 10.1016/j.bbrc.2006.01.181
246. Yamaguchi T., Sato H., Kato-Itoh M., Goto T., Hara H., Sanbo M., Mizuno N., Kobayashi T., Yanagida A., Umino A., Ota Y., Hamanaka S., Masaki H., Rashid S. T., Hirabayashi M., Nakauchi H. Interspecies organogenesis generates autologous functional islets. Nature. 2017. V. 542, no. 7640. P. 191-196. DOI: 10.1038/ nature21070
247. Yang L., Guell M., Byrne S., Yang J. L., De Los Angeles A., Mali P. , Aach J., Kim-Kiselak C., Briggs A. W., Rios X., Huang P. Y., Daley G., Church G. Optimization of scarless human stem cell genome editing. Nucleic Acids Research. 2013. V. 41, no. 19. P. 9049-9061. DOI: 10.1093/nar/gkt555
248. Yébenes H., Mesa P., Muñoz I. G., Montoya G., Valpuesta J. M. Chaperonins: two rings for folding. Trends in Biochemical Sciences. 2011. V. 36, no. 8. P. 424-432. DOI: 10.1016/j.tibs.2011.05.003
249. Yu Z., Ren M., Wang Z., Zhang B., Rong Y. S., Jiao R., Gao G. Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila. Genetics. 2013. V. 195, no. 1. P. 289-291. DOI: 10.1534/genetics.113.153825
250. Zabriskie J. B. Essential clinical immunology. Cambridge: Cambridge University Press, 2009. 362 p.
251. Zetsche B., Gootenberg J. S., Abudayyeh O. O., Slaymaker I. M., Makarova K. S., Essletzbichler P., Volz S. E., Joung J., van der Oost J., Regev A., Koonin E. V., Zhang F. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015. V. 163, no. 3. P. 759-771. DOI: 10.1016/j.cell.2015.09.038
252. Zhang J. F., Fu W. M., He M. L., Wang H., Wang W. M., Yu S. C., Bian X. W., Zhou J., Lin M. C., Lu G., Poon W. S., Kung H. F. MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix. Molecular Biology of the Cell. 2011. V. 22, no. 21. P. 3955-3961. DOI: 10.1091/mbc.E11-04-0356
253. Zhang L., Geng W. R., Hu J., Chen X. M., Shen Y. L., Wang L. L., Jiang J. P., Chen Y. Y. Lipopolysaccharide pretreatment promotes cardiac stem cell migration through heat shock protein 90-dependent β-catenin activation. Life Sciences. 2016. V. 153. P. 132-140. DOI: 10.1016/j.lfs.2016.04.021
254. Zhang S., Liu W., Wang P., Hu B., Lv X., Chen S., Wang B., Shao Z. Activation of HSP70 impedes tert-butyl hydroperoxide (t-BHP)-induced apoptosis and senescence of human nucleus pulposus stem cells via inhibiting the JNK/c-Junpathway. Molecular and Cellular Biochemistry. 2021. V. 476, no. 5. P. 1979-1994. DOI: 10.1007/s11010-021-04052-1
255. Zhao C., Sun G., Li S., Shi Y. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nature Structural & Molecular Biology. 2009. V. 16, no. 4. P. 365-371. DOI: 10.1038/ nsmb.1576
256. Zhuang X., Xiang X., Grizzle W., Sun D., Zhang S., Axtell R. C., Ju S., Mu J., Zhang L., Steinman L., Miller D., Zhang H. G. Treatment of brain infl ammatory diseases by delivering exosome encapsulated antiinflammatory drugs from the nasal region to the brain. Molecular Therapy. 2011. V. 19, no. 10. P. 1769-1779. DOI: 10.1038/ mt.2011
257. Zia S., Mozafari M., Natasha G., Tan A., Cui Z., Seifalian A. M. Hearts beating through decellularized scaffolds: whole-organ engineering for cardiac regeneration and transplantation. Critical Reviews in Biotechnology. 2016. V. 36, no. 4. P. 705-715. DOI: 10.3109/07388551.2015.1007495