Книга

Иммунные реакции моллюсков
В последние десятилетия возрос интерес к исследованиям в области сравнительной иммунологии. Наиболее изучаемыми моде лями среди беспозвоночных стали представители типов моллюски и членистоногие. В учебном пособии выполнен сравнительно-иммунологический анализ защитных реакций моллюсков: подробно рассматриваются результаты современных исследований, а также основные гипотезы, объясняющие природу и механизмы иммунного ответа. Рассматриваются как клеточные, так и гуморальные аспекты иммунных реакций. При этом ключевым звеном в обоих случаях признаются клетки гемолимфы, поэтому много внимания уделяется гемопоэзу, клеточной дифференциации и функциональной активности гемоцитов, включая поведение последних при иммунизации моллюсков различными факторами. Особое внимание уделено анализу аналогичности иммунных реакций моллюсков и позвоночных животных. Отмечается, что механизмы клеточного и гуморального врожденного иммунитета в обоих случаях демонстрируют принципиальное сходство на всех этапах иммунного ответа.
1. Атаев Г. Л., Полевщиков А. В., 2004. Защитные реакции брюхоногих моллюсков. 1. Клеточные реакции // Паразитология. T. 38. № 4. C. 342-351.
2. Атаев Г. Л., Дьячков И. С., Полевщиков А. В., 2005a. Сравнительно-иммунологический анализ защитных реакций брюхоногих моллюсков // Известия РГПУ. T. 5. № 13. C. 265-281.
3. Атаев Г. Л., Еремина Е. Е., Полевщиков А. В., 2005б. Защитные реакции брюхоногих моллюсков. Гуморальные реакции // Паразитология. T. 39. № 1. C. 3-15.
4. Атаев Г. Л., Прохорова Е. Е., 2013. Изменения в амёбоцито-продуцирующем органе моллюсков Biomphalaria glabrata при заражении трематодами Echinostoma caproni // Паразитология. T. 47. № 6. C. 472-479.
5. Атаев Г. Л., Прохорова Е. Е., Токмакова А. С., 2020. Защитные реакции лёгочных моллюсков при паразитарной инвазии // Паразитология. Т. 54. № 5. С. 371-401. https://doi.org/10.31857/ S1234567806050028.
6. Галактионов В. Г., 2005. Эволюционная иммунология. М.: ИКЦ «Академкнига». 408 с.
7. Добровольский А. А., Райхель А. С., 1973. Жизненный цикл Haplometra cylindracea Zeder 1800 (Trematoda, Plagiorchiidae) // Вестник Ленинградского университета. T. 3. C. 5-13.
8. Кокряков В. Н., 2006. Очерки о врожденном иммунитете. СПб.: Наука. 261 с.
9. Купер Э., 1980. Сравнительная иммунология. М.: Мир. 422 с.
10. Прохорова Е. Е., Токмакова А.С, Атаев Г. Л., 2015. Реакция гемо-цитов моллюсков Planorbarius corneus на ксенотрансплантат // Паразитология. T. 49. № 2. C. 128-132.
11. Прохорова Е. Е., Серебрякова М. К., Токмакова А. С., Кудрявцев И. В., Усманова Р. Р., Атаев Г. Л., 2018. Анализ клеточного состава гемолимфы трех видов планорбид (Gastropoda: Pulmonata) // Invertebrate Zoology. T. 15. № 1. C. 103-113.
12. Прохорова Е. Е., Атаев Г. Л., 2021. Фибриногенподобные белки гастропод // Паразитология. T. 55. № 6. C. 443-464. https://doi. org/10.31857/S0031184721060016.
13. Стадниченко А. П., Иваненко Л. Д., Колосенко Н. А., Бубон А. Б., Литвинчук Р. В., 1981. Патоморфологические изменения клеточных элементов гемолимфы пресноводных лёгочных и переднежаберных моллюсков при инвазии их партенитами трематод // Паразитология. T. 15. № 5. С. 407-414.
14. Токмакова А. С., 2018. Клеточные реакции легочных моллюсков на трематодную инвазию. Автореф. дис. … канд. биол. наук. СПб., 22 с.
15. Accorsi A., Ottaviani Е., Malagoli D., 2014. Effects of repeated hemo-lymph withdrawals on the hemocyte populations and hematopoiesis in Pomacea canaliculata // Fish Shellfi sh Immunol. Vol. 38. № 1. P. 56-64. https://doi.org/10.1016/j.fsi.2014.03.003.
16. Adamowicz A., Bolaczek M., 2003. Blood cells morphology of the snail helix Aspersa maxima (Helicidae) // Zoologica Poloniae. V. 48. P. 93- 101.
17. Adema C. M., Harris R. A., van Deutekom-Mulder E. C., 1992. A comparative study of hemocytes from six different snails: morphology and functional aspects // J. I nvertebr. Pathol. V. 59. № 1. P. 24-32. https://doi.org/10.1016/0022-2011(92)90107-f.
18. Adema С. M., van Deutekom-Mulder E. C., van der Knaap W. P., Sminia T., 1994. Schistosomicidal activities of Lymnaea stagnalis haemocytes: the role of oxigen radicals // Parasitology. V. 109. № 4. P. 479-485. https://doi.org/10.1017/s0031182000080732.
19. Adema C. M., Hertel L. A., Miller R. D., Loker E. S., 1997. A family of fi brinogen-related proteins that precipitates parasite-derived molecules is produced by an invertebrate after infection // PNAS. V. 94. № 16. P. 8691-8696. https://doi.org/10.1073/pnas.94.16.8691.
20. Adema С. M., Sapp К. K., Hertel L. A., Loker E. S., 2001. Immuno-biology of the relationship of echinostomes with snail intermediate hosts. In: Fried B., Graczyk T. K. (eds.) Echinostomes as experimental models for biological research. Dordrecht, Boston, London, Kluwer Academic Publishers. P. 149-173.
21. Adema C. M., Loker E. S., 2015. Digenean-gastropod host associations inform on aspects of specifi c immunity in snails // Dev. Comp.
22. Immunol. V. 48. № 2. P. 275-283. https://doi.org/10.1016/j. dci.2014.06.014.
23. Adema C. M., Hillier L. W., Jones C. S., Loker E. S., Knight M., Minx P., et al., 2017. Whole genome analysis of a schistosomiasis-trans-mitting freshwater snail // Nature Communications. V. 8. № 15451. P. 1-11. https://doi.org/10.1038/ncomms15451.
24. Akira, S., Takeda, K., 2004. Toll-like receptor signalling // Nat. Rev. Immunol. 4, 499-511.
25. Allam B., Ashton-Alcox K. A. Ford S. E., 2002. Flow cytometric comparison of haemocytes from three species of bivalve molluscs // Fish Shellfish Immunol. V. 13. P. 141-158. https://doi.org/10.1006/ fsim.2001.0389.
26. Allam B., Raftos D., 2015. Immune responses to infectious diseases in bivalves // J. Invertebr. Pathol. V. 131. P. 121-136. http://dx.doi. org/10.1016/j.jip.2015.05.005.
27. Armstrong P. B., 2006. Proteases and protease inhibitors: a balance of activities in host-pathogen interaction // Immunobiology. V. 211. № 4. P. 263-281. https://doi.org/10.1016/j.imbio.2006.01.002.
28. Atae v G. L., Coustau C., 1999. Cellular response to Echinostoma cap-roni infection in Biomphalaria glabrata strains selected for susceptibility/resistance // Dev. Comp. Immunol. V. 23. № 3. P. 187-198. https://doi.org/10.1016/s0145-305x(99)00023-3.
29. Ataev G. L., Babich P. S., Tokmakova A. S., 2013. Study of the spo-rocyst broodsac coloring of Leucochloridium paradoxum (Trematoda: Brachylaemidae) // Parasitologia. V. 47. № 5. P. 372-379.
30. Ataev G. L., Prokhorova E. E., Kudryavtsev I. V., Polevshchikov A. V., 2016. The infl uence of trematode infection on the hemocyte composition in Planorbarius corneus (Gastropoda, Pulmonata) // Invertebr. Surviv. J. V. 13, № 1. P. 164-171.
31. Bachali S., Jager M., Hassanin A., Schoentgen F., Jollès P., Fiala-Medioni A., Deutsch J. S., 2002. Phylogenetic analysis of invertebrate lysozymes and the evolution of lysozyme function // J. M ol. Evol. V. 54. № 5. P. 652-664. https://doi.org/10.1007/s00239-001-0061-6.
32. Bachère E., Gueguen Y., Gonzalez M., de Lorgeril J., Garnier J., Romes-tand B., 2004. Insights into the anti-microbial defense of marine invertebrates: the penaeid shrimps and the oyster Crassostrea gigas Immunol. Rev. V. 198. P. 149-168. https://doi.org/10.1111/j.0105- 2896.2004.00115.x.
33. Balseiro P., Falcó A., Romero A., Dios S., Martínez-López A., Figueras A., Estepa A., Novoa B., 2011. Mytilus galloprovincialis myticin C: a chemotactic molecule with antiviral activity and immunoregulatory properties // PLoS One. V. 6. № 8. P. e23140. https://doi.org/10.1371/ journal.pone.0023140.
34. Barber B. J., 2004. Neoplastic diseases of commercially important marine bivalves // Aquat. Living Resour. V. 17. P. 449-466. https://doi. org/10.1051/alr:2004052.
35. Baron O. L., Deleury E., Reichart J. M., Coustau C., 2016. The LBP/ BPI multigenic family in invertebrates: Evolutionary history and evidences of specialization in mollusks // Dev. Comp. Immunol. V. 57. P. 20-30. https://doi.org/10.1016/j.dci.2015.11.006.
36. Batista F. M., Boudry P., Dos Santos A., Renault T., Ruano F., 2009. Infestation of the cupped oysters Crassostrea angulata, C. gigas and their fi rst-generation hybrids by the copepod Myicola ostreae: differences in susceptibility and host response // Parasitology. V. 136. № 5. P. 537-543. https://doi.org/10.1017/S0031182009005691.
37. Bayne C. J., Moore M. N., Carefoot T. H., Thompson R. J., 1979. He-molymph functions in Myths californianus: The cytochemistry of hemocytes and their responses to foreign implants and hemolymph factors in phagocytosis // J. Invertebr. Pathol. V. 34. P. 1-20. https:// doi.org/10.1016/0022-2011(79)90048-X.
38. Bayne C. J., Hahn U. K., Bender R. C., 2001. Mechanisms of mol-luscan host resistance and of parasite strategies for survival // Parasitology. V. 123. Suppl: S. P. 159-167. https://doi.org/10.1017/ s0031182001008137.
39. Benoist L., Corre E., Bernay B., Henry J., Zatylny-Gaudin C., 2020. -Omic analysis of the Sepia offi cinalis white body: New insights into multifunctionality and haematopoiesis regulation // J. Proteome Res. V. 19. № 8. P. 3072-3087. https://doi.org/10.1021/acs.jproteome.0c00100.
40. Boisseaux P., Delignette-Muller M.-L., Abbaci K., Thomas H., Garric J., 2016. Analysis of hemocytes in Lymnaea stagnalis: Characterization and effects of repeated hemolymph collections // Fish Shellfi sh Immunol. V. 57. P. 116-126. https://doi.org/10.1016/j.fsi.2016.08.007.
41. Bolognari A., 1951. Morfologia, struttura e funzione de! “corpo bianco” dei Cefalopodi. Parte II: Struttura e funzione // Arch. Zool. Ital. V. 36. P. 253-287.
42. Bolognari, A., Fasulo S., Licata A., 1980. A preliminary comparison of the leucocyte series in the white body of the Cephalopod Toda-rodes sagittatus and the granulocyte series in the bone marrow of the Rat Rattus rattus // Bull. Zool. V. 41. P. 221-225. https://doi. org/10.1080/11250008009438678.
43. Bouc hut A., Roger E., Coustau C., Gourbal B., Mitta G., 2006. Compatibility in the Biom phalaria glabrata/Echinostoma caproni model: potential involvement of adhesion genes // Int. J. Parasitol. V. 36. № 2. P. 175-184. https://doi.org/10.1016/j.ijpara.2005.09.009.
44. Brehélin M., 1986. Immunity in Invertebrates. Cells, Molecules, and Defense Reactions // Springer, Berlin, Heidelberg. 234 p. https://doi. org/10.1007/978-3-642-70768-1.
45. Buchmann K., 2014. Evolution of innate immunity: clues from invertebrates via fi sh to mammals // Front. Immunol. V. 5. P. 459. https:// doi.org/10.3389/fi mmu.2014.00459.
46. Butt D., Raftos D., 2008. Phenoloxidase-associated cellular defence in the Sydney rock oyster, Saccostrea glomerata, provides resistance against QX disease infections // Dev. Comp. Immunol. V. 32. № 3. P. 299-306. https://doi.org/10.1016/j.dci.2007.06.006.
47. Cajaraville M. P., Pal S. G., 1995. Morphofunctional study of the hae-mocytes of the bivalve mollusc Mytilus galloprovincialis with emphasis on the endolysosomal compartment // Cell Struct. Funct. V. 20. № 5. P. 355-367. https://doi.org/10.1247/csf.20.355.
48. Carballal M. J., Lopez C., Azevedo C., Villalba A., 1997. In vitro study of phagocytic ability of Mytilus galloprovincialis Lmk. Haemocytes // Fish Shellfi sh Immunol. V. 7. № 6. P. 403-416.
49. Carballal M. J., Barber B. J., Iglesias D., Villalba A., 2015. Neoplas-tic diseases of marine bivalves // J. Invertebr. Pathol. V. 131. P. 83- 106. https://doi.org/10.1016/j.jip.2015.06.004.
50. Carella F., Feist S. W., Bignell J. P., De Vico G., 2015. Comparative pathology in bivalves: Aetiological agents and disease processes // J. Invertebr. Pathol. V. 131. P. 107-120. https://doi.org/10.1016/j. jip.2015.07.012.
51. Castellanos-Martínez S., Arteta D., Catarino S., Gestal C., 2014. De novo transcriptome sequencing of the Octopus vulgaris hemocytes using Illumina RNA-Seq technology: response to the infection by the gastrointestinal parasite Aggregata octopiana // PLoS One. V. 9. P. e107873. https://doi.org/10.1371/journal.pone.0107873
52. Castellanos-Martínez, M. Prado-Alvarez, A. Lobo-da-Cunha, C. Azevedo, C. Gestal, 2014b. Morphologic, cytometric and functional characterization of the common octopus (Octopus vulgaris) hemocytes // Dev. Comp. Immunol. 44 (1) 50e58.
53. Castillo M. G., Goodson M. S., McFall-Ngai M., 2009. Identifi cation and molecular characterization of a complement C3 molecule in a lo-photrochozoan, the Hawaiian bobtail squid Euprymna scolopes //
54. Dev. Comp. Immunol. V. 33. № 1. P. 69-76. https://doi.org/10.1016/j. dci.2008.07.013.
55. Castillo M. G., Salazar K. A., Joffe N. R., 2015. The immune response of cephalopods from head to foot // Fish Shellfi sh Immunol. V. 46. № 1. P. 145-160. https://doi.org/10.1016/j.fsi.2015.05.029.
56. Cavalcanti M. G.S., Filho F. C., Mendonc A. M.B., Duartec G. R., Bar-bosa C. C. G. S., De Castro C. M. M. B., Alves L. C., Brayner F. A., 2012. Morphological characterization of hemocytes from Biomphal-aria glabrata and Biomphalaria straminea // Micron. V. 43. № 2-3. P. 285-291. https://doi.org/10.1016/j.micron.2011.09.002.
57. Charlet M., Chernysh S., Philippe H., Hetru C., Hoffmann J. A., Bulet P., 1996. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis // J. Biol. Chem. V. 271. № 36. P. 21808-21813. https://doi.org/10.1074/jbc.271.36.21808.
58. Cheng T. C., Jourdane J., 1987. Transient cellular reaction in Biom-phalaria glabrata (Mollusca) to heterotopic isografts // J. Invertebr. Pathol. V. 49. № 3. P. 273-278. https://doi.org/10.1016/0022-2011(87) 90059-0.
59. Chun C. K., Troll J. V., Koroleva I., Brown B., Manzella L., Snir E., et al., 2008. Effects of colonization, luminescence, and autoinducer on host transcription during development of the squid-Vibrio association // Proc. Nat.l Acad. Sci. V. 105. № 32. P. 11323-11328. https://doi.org/10.1073/pnas.0802369105.
60. Cima F., Matozzo V., Marin M. G., Ballarin L., 2000. Haemocytes of the clam Tapes philippinarum (Adams & Reeve, 1850): morphofunc-tional characterization // Fish Shellfi sh Immunol. V. 10. P. 677-693. https://doi.org/10.1006/fsim.2000.0282.
61. Claes M. F., 1996. Functional morphology of the white bodies of the cephalopod mollusc Sepia offi cinalis // Acta Zoologica. V. 77. № 2. P. 173-190.
62. Collins A. J., Schleicher T. R., Rader B. A., Nyholm S. V., 2012. Understanding the role of host hemocytes in a squid/Vibrio symbiosis using transcriptomics and proteomics // Front. Immunol. V. 3. P. 91. https://doi.org/10.3389/fi mmu.2012.00091.
63. Collins III J. J., Wang B., Lambrus B. G., Marla T., Harini I., New-mark P. A., 2013. Adult somatic stem cells in the human parasite, Schistosoma mansoni // Nature. V. 494. № 7438. P. 476-479. https:// doi.org/10.1038/nature11924.
64. Connors V. A., Yoshino T. P., 1990. In vitro effect of larval Schisto-soma mansoni excretory-secretory products on phagocytosis-stimulated superoxide production in hemocytes from Biomphalaria gla-brata // J. Parasitol. V. 76. № 6. P. 895-902.
65. Connors V. A., Lodes M. J., Yoshino T. P., 1991. Identifi cation of Schis-tosoma mansoni sporocyst excretory secretory antioxidant molecule and its effect on superoxide production by Biomphalaria glabrata hemocytes // J. Invertebr. Pathol. V. 58. P. 387-395. https://doi. org/10.1016/0022-2011(91)90185-s.
66. Connors V. A., 2003. The schistosome - snail interaction: factors involved in host immunodefense activation and parasite killing in susceptible and resistant Biomphalaria glabrata // Combes C., Jourdane J. (eds.). Taxonomy, ecology and evolution of metazoan parasites. Perpignan: Presses Univ. de Perpignan, 203-224.
67. Conte A., Ottaviani E., 1995. Nitric oxide synthase activity in mol-luscan hemocytes // FEBS Letters. V. 365. № 2-3. P. 120-124. https:// doi.org/10.1016/0014-5793(95)00439-g.
68. Costa M. M., Dios S., Alonso-Gutierrez J., Romero A., Novoa B., Figuer-as A., 2009. Evidence of high individual diversity on myticin C in mussel (Mytilus galloprovincialis) // Dev. Comp. Immunol. V. 33. № 2. P. 162-170. https://doi.org/10.1016/j.dci.2008.08.005.
69. Cowden R. R., 1972. Some cytological and cytochemical observations on leukopoietic organs, white bodies, of Octopus vulgaris // J. In-vertebr. Pathol. V. 19. № 1. P. 113-119. https://doi.org/10.1016/0022- 2011(72)90196-6.
70. Cowden R. R., Curtis S. K., 1973. Observations on living cells dissociated from the leukopoietic organ of Octopus briareus // Exp. Mol. Pathol. V. 19. P. 178-185. https://doi.org/10.1016/0014-4800(73) 90077-4.
71. Cowden R. R., Curtis S. K., 1974. The octopus white body: an ultra-structural survey // Contemp. Topics in Immunobiol. V. 4. P. 77-90. https://doi.org/10.1007/978-1-4684-3048-6_8.
72. Cueto J. A., Rodriguez C., Vega I. A., Castro-Vazquez Alfredo., 2015. Immune defenses of the invasive apple snail Pomacea canaliculata (Caenogastropoda, Ampullariidae): Phagocytic hemocytes in the circulation and the kidney // PLoS One. V. 10. № 4. P. e0123964. https://doi.org/10.1371/journal.pone.0123964.
73. De Jong-Brink M., 1994. How schistosomes profi t from the stress responses they elicit in their hosts // Adv. Parasitol. V. 35. P. 177-256. https://doi.org/10.1371/10.1016/s0065-308x(08)60072-x.
74. De Zoysa M., Jung S., Lee J., 2009. First molluscan TNF-alpha ho-mologue of the TNF superfamily in disk abalone: molecular characterization and expression analysis // Fish Shellfi sh Immunol. V. 26. P. 625-631. https://doi.org/10.1016/j.fsi.2008.10.004.
75. Deininger M. H., Meyermann R., Schluesener H. J., 2002. The allograft infl ammatory factor-1 family of proteins // FEBS Lett. V. 514. № 2-3. P. 115-121. https://doi.org/10.1016/s0014-5793(02)02430-4.
76. Detree C., Chabenat A., Lallier F. H., Satoh N., Shoguchi E., Tanguy A., Mary J., 2016. Multiple I-type lysozymes in the hydrothermal vent mussel Bathymodiolus azoricus and their role in symbiotic plasticity // PLoS One. V. 11. № 2. P. e0148988. https://doi. org/10.1371/journal.pone.0148988.
77. Dheilly N. M., Duval D., Mouahid G., Emans R., Allienne J.-F., Gali-nier R., et al., 2015. A family of variable immunoglobulin and lectin domain containing molecules in the snail Biomphalaria glabrata // Dev. Comp. Immunol. V. 48. № 1. P. 234-243. https://doi.org/10.1016/j. dci.2014.10.009.
78. Dikkeboom R., van der Knaap W. P., van den Bovenkamp W., Tijna-gel J. M., Bayne C. J., 1988. The production of toxic oxygen metabolites by hemocytes of different snail species // Dev. Comp. Immunol. V. 12. № 3. P. 509-520. https://doi.org/10.1016/0145- 305x(88)90068-7.
79. Dinguirard N., Cavalcanti M. G.S., Wu X. J., Bickham-Wright U., Sa-bat G., Yoshino T. P., 2018. Proteomic analysis of Biomphalaria glabrata hemocytes during in vitro encapsulation of Schistosoma mansoni sporocysts // Front. Immunol. V. 9. P. 2773. https://doi. org/10.3389/fi mmu.2018.02773.
80. Domeneghetti S., Franzoi M., Damiano N., Norante R., El Halfawy N. M., Mammi S., et al., 2015. Structural and antimicrobial features of pep-tides related to myticin C, a special defense molecule from the Mediterranean mussel Mytilus galloprovincialis // J. Agric. Food. Chem. V. 63. P. 9251-9259. https://doi.org/10.1021/acs. jafc.5b03491.
81. Doolittle R. F., 1992. A detailed consideration of a principal domain of vertebrate fi brinogen and its relatives // Protein Science. V. 1. № 12. P. 1563-1577. https://doi.org/10.1002/pro.5560011204
82. Dunkelberger J. R., Song W.-C., 2010. Complement and its role in innate and adaptive immune responses // Cell Res. V. 20. № 1. P. 34-50. https://doi.org/10.1038/cr.2009.139
83. Duval D., Pichon R., Lassalle D., Laffi tte M., Gourbal B., Galinier R., 2020. A new assessment of thioester-containing proteins diversity of the freshwater snail Biomphalaria glabrata // Genes (Basel). V. 11. № 1. P. 69. https://doi.org/10.3390/genes11010069
84. Dyachuk V. A., Maiorova M. A., Odintsova N. A., 2015. Identifi cation of β integrin-like and fi bronectin-like proteins in the bivalve mollusk Mytilus trossulus // Dev. Growth Differ. V. 57. № 7. P. 515-528. https://doi.org/10.1111/dgd.12234
85. Dyachuk V. A., 2016. Hematopoiesis in bivalvia larvae: Cellular origin, differentiation of hemocytes, and neoplasia // Dev. Comp. Immunol. V. 65. P. 253-257. https://doi.org/10.1016/j.dci.2016.07.019
86. El-Sayed K. A., El-Din A. H., Gad EL-KAarim R. M., 2014. A comparative study of haemocytes from resistant and susceptible Lym-naea natalensis snails exposed to Fasciola gigantic miracidia. // J. Egypt. Soc. Parasitol. V. 44. № 3. P. 653-660. https://doi.org/ 10.12816/0007868
87. Ertl N. G., O’Connor W. A., Papanicolaou A., Wiegand A. N., Elizur A., 2016. Transcriptome analysis of the Sydney rock oyster, Sac-costrea glomerata: insights into molluscan immunity // PLoS One. V. 11. P. e0156649. https://doi.org/10.1371/journal.pone.0156649
88. Feng B., Dong L., Niu D., Meng S., Zhang B., Liu D., et al., 2010. Identifi cation of immune genes of the Agamaki clam (Sinonovacula constricta) by sequencing and bioinformatic analysis of ESTs // Mar. Biotechnol. V. 12. P. 282-291. https://doi.org/10.1007/s10126-009-9216-z
89. Ford L. A., 1992. Host defense mechanisms of cephalopods // Annu. Rev. Fish Dis. V. 2. P. 25-41. https://doi.org/10.1016/0959-8030(92)90054-2
90. Ford. A., Alexander S. K., Cooper K. M., Hanlon R. T., 1986. Bacterial populations of normal and ulcerated mantle tissue of the squid, Lolliguncula brevis, J. Invertebr. Pathol. 48 13e26.
91. Franchini A., Ottaviani E., 2000. Repair of molluscan tissue injury: role of PDGF and TGF-beta1 // Tissue Cell. V. 32. № 4. P. 312-321. https://doi.org/10.1054/tice.2000.0118
92. Fryer S. E., Bender R. C., Bayne C. J., 1996. Inhibition of cysteine proteinase from Schistosoma mansoni larvae by alpha-macroglobulin from the plasma of Biomphalaria glabrata // J. Parasitol. V. 82. № 2. P. 343-347.
93. Furuta E., Yamaguchi K., Shimozawa A., 1990. Hemolymph cells and the platelet-like structures of the land slug, Incilaria bilineata (Gastropoda: Pulmonata) // Anat. Anz. V. 170. P. 99-109.
94. Furuta E., Yamaguchi K., 2001. Haemolymph: blood cell morphology and function // Barker G. M. (ed.) The biology of terrestrial molluscs. P. 289-306.
95. Galinier R., Portela J., Mone Y., Allienne J.-F., Henri H., Delbecq S., et al., 2013. Biomphalysin, a new β pore-forming toxin involved in Biomphalaria glabrata immune defense against Schistosoma man-soni // PLoS Pathogens. V. 9. № 3. P. e1003216. https://doi.org/10.1371/ journal.ppat.1003216
96. Galinier R., Tetreau G., Portet A., Pinaud S., Duval D., Gourbal B., 2017. First characterization of viruses from freshwater snails of the genus Biomphalaria, the intermediate host of the parasite Schisto-soma mansoni // Acta Trop. V. 167. P. 196-203. https://doi.org/10.1016/ j.actatropica.2016.12.021
97. Garcia A. B., Pierce R. J., Gourbal B., Werkmeister E., Colinet B., Reichhart J.-M., Dissous C., Coustau C., 2010. Involvement of the cytokine MIF in the snail host immune response to the parasite Schistosoma mansoni // PLoS Pathog. V. 6. № 9. P. e1001115. https:// doi.org/10.1371/journal.ppat.1001115
98. Gerdol M., Manfrin C., De Moro G., Figueras A., Novoa B., Venier P., et al., 2011. The C1q domain containing proteins of the Mediterranean mussel Mytilus galloprovincialis: a widespread and diverse family of immune-related molecules // Dev. Comp. Immunol. V. 35. P. 635-643. https://doi.org/10.1016/j.dci.2011.01.018
99. Gerdol M., Venier P., 2015. An updated molecular basis for mussel immunity // Fish Shellfi sh Immunol. V. 46. P. :17-38. https://doi. org/10.1016/j.fsi.2015.02.013
100. Gerdol M., Venier P., Pallavicini A., 2015. The genome of the Pacifi c oyster Crassostrea gigas brings new insights on the massive expansion of the C1q gene family in Bivalvia // Dev. Comp. Immunol. V. 49. № 1. P. 59-71. https://doi.org/10.1016/j.dci.2014.11.007
101. Gerdol M., Gomez-Chiarri M., Castillo M. G., Figueras A., Fiorito G., Moreira R., et al., 2018. Immunity in Molluscs: Recognition and effector mechanisms, with a Focus on Bivalvia // Cooper E. L. (ed.). Advances in Comparative Immunology. Cham, Switzerland: Springer Inernational Publishing. P. 225-341. https://doi.org/10.1007/978-3-319-76768-0_11
102. Gestal C., Pallavicini A., Venier P., Novoa B., Figueras A., 2010. MgC1q, a novel C1q-domain-containing protein involved in the immune response of Mytilus galloprovincialis // Dev. Comp. Immunol. V. 34. № 9. P. 926-934. https://doi.org/10.1016/j.dci.2010.02.012
103. Gonzalez M., Gueguen Y., Desserre G., de Lorgeril J., Romestand B., Bachère E., 2007. Molecular characterization of two isoforms of de-fensin from hemocytes of the oyster Crassostrea gigas // Dev. Comp.
104. Immunol. V. 31. № 4. P. 332-339. https://doi.org/10.1016/j.dci. 2006.07.006
105. Goodson M. S., Kojadinovic M., Troll J. V., Scheetz T. E., Casa-vant T. L., Soares M. B., McFall-Ngai M. J., 2005. Identifying components of the NF-kappaB pathway in the benefi cial Euprymna scolopes-Vibrio fi scheri light organ symbiosis // Appl. Environ. Microbiol. V. 71. P. 6934-6946. https://doi.org/10.1128/AEM.71.11.6934-6946.2005
106. Gorbushin A. M., Iakovleva N. V., 2006. Haemogram of Littorina lit-torea // J. Mar. Biolog. Assoc. V. 86. P. 1175-1181.
107. Gordy M. A., Pila E. A., Hanington P. C., 2015. The role of fi brinogen-related proteins in the gastropod immune response // Fish Shellfi sh Immunol. V. 46. № 1. P. 39-49. https://doi.org/10.1016/j.fsi.2015.03.005
108. Gourbal B., Pinaud S., Beckers G., Van Der Meer J., Conrath U., Netea M., 2018. Innate immune memory: an evolutionary perspective // Immunol. Rev. V. 283. № 1. P. 21-40. https://doi.org/10.1111/ imr.12647
109. Grimaldi A. M., Belcari P., Pagano E., Cacialli F., Locatello L., 2013. Immune responses of Octopus vulgaris (Mollusca: Cephalopoda) exposed to titanium dioxide nanoparticles // J. Exp. Mar. Biol. Ecol. V. 447. P. 123-127. https://doi.org/10.1016/j.jembe.2013.02.018
110. Grinchenko A., Sokolnikova Y., Korneiko D., Kumeiko V., 2015. Dynamics of the immune response of the horse mussel Modiolus kurilensis (Bernard, 1983) following challenge with heat-inactivated bacteria // J. Shellfish Res. V. 34. № 3. P. 909-917. https://doi. org/10.2983/-035.034.0321
111. Gueguen Y., Herpin A., Aumelas A., Garnier J., Fievet J., Escoubas J.-M., et al., 2006. Characterization of a defensin from the oyster Crassostrea gigas. Recombinant production, folding, solution structure, antimicrobial activities, and gene expression // J. Biol. Chem. V. 281. № 1. P. 313-323. https://doi.org/10.1074/jbc.M510850200
112. Guillou F., Mitta G., Dissous C., Pierce R., Coustau C., 2004. Use of individual polymorphism to validate potential functional markers: case of a candidate lectin (BgSel) differentially expressed in susceptible and resistant strains of Biomphalaria glabrata // Comp. Bio-chem. Physiol. B Biochem. Mol. Biol. V. 138. P. 175-181. https:// doi.org/10.1016/j.cbpc.2004.03.010
113. Guillou F., Mitta G., Galinier R., Coustau C., 2007. Identifi cation and expression of gene transcripts generated during an anti-parasitic response in Biomphalaria glabrata // Dev. Comp. Immunol. V. 31. P. 657-671. https://doi.org/10.1016/j.dci.2006.10.001
114. Gust M., Fortier M., Garric J., Fournier M., Gagne F., 2013. Effects of short-term exposure to environmentally relevant concentrations of different pharmaceutical mixtures on the immune response of the pond snail Lymnaea stagnalis // Sci. Total Environ. V. 445-446. P. 210-218. https://doi.org/10.1016/j.scitotenv.2012.12.057
115. Gutiérrez-Rivera J. N., Arcos-Ortega G. F., Luna-González A., Rodrí-guez-Jaramillo M. C., Arechiga-Carvajal E. T., Vázquez-Juárez R., 2015. Differential expression of serine protease inhibitors 1 and 2 in Crassostrea corteziensis and C. virginica infected with Perkinsus marinus // Dis. Aquat. Organ. V. 112. № 3. P. 185-197. https://doi. org/10.3354/dao02808
116. Hahn U. K., Bender R. C., Bayne C. J., 2001. Killing of Schistosoma mansoni sporocysts by hemocytes from resistant Biomphalaria gla-brata: role of reactive oxygen species // J. Parasitol. V. 87. № 2. P. 292-299. https://doi.org/10.1645/0022-3395(2001)087[0292:KOSMS B]2.0.CO;2
117. Hanington P. C., Lun C.-M., Adema C. M., Loker E. S., 2010a. Time series analysis of the transcriptional responses of Biomphalaria gla-brata throughout the course of intramolluscan development of Schis-tosoma mansoni and Echinostoma paraensei // Int. J. Parasitol. V. 40. № 7. P. 819-831. https://doi.org/10.1016/j.ijpara.2009.12.005
118. Hanington P. C., Forys M. A., Dragoo J. W., Zhang S.-M., Adema C., Loker E. S., 2010b. Role for a somatically diversifi ed lectin in resistance of an invertebrate to parasite infection // PNAS. V. 107. № 49. P. 21087-21092. https://doi.org/10.1073/pnas.1011242107
119. Hanington P. C., Forys M. A., Loker E. S., 2012. A somatically diver-sifi ed defense factor, FREP3, is a determinant of snail resistance to Schistosome infection // PLoS Negl. Trop. Dis. V. 6 № 3. P. e1591. https://doi.org/10.1371/journal.pntd.0001591
120. Harris K. R., 1975. The fi ne structure of encapsulation in Biomphal-aria glabrata. Ann. N. Y. Acad. Sci. V. 266. P. 446-464. https://doi. org/10.1111/j.1749-6632.1975.tb35123.x
121. He C., Yu H., Liu W., Su H., Shan Z., Bao X., et al., 2012. A goose-type lysozyme gene in Japanese scallop (Mizuhopecten yessoensis): cDNA cloning, mRNA expression and promoter sequence analysis // Comp. Biochem. Physiol. B Biochem. Mol. Biol. V. 162. № 1-3. P. 34-43. https://doi.org/10.1016/j.cbpb.2012.02.002
122. Heath-Heckman E. A.C., Gillette A. A., Augustin R., Gillette M. X., Goldman W. E., McFall-Ngai M. J., 2014. Shaping the microenviron-ment: evidence for the infl uence of a host galaxin on symbiont acquisition and maintenance in the squid-Vibrio symbiosis // Environ Microbiol. V. 16. № 12. P. 3669-3682. https://doi.org/10.1111/1462- 2920.12496
123. Hermann P. M., Nicol J. J., Nagle G. T., Bulloch A. G., Wilder-ing W. C., 2005. Epidermal growth factor-dependent enhancement of axonal regeneration in the pond snail Lymnaea stagnalis: role of phagocyte survival // J. Comp. Neurol. V. 492. № 4. P. 383-400. https://doi.org/10.1002/cne.20732
124. Hernández-Méndez L. S., Castro-Longoria E., Araujo-Palomares C. L., García-Esquivel Z., Castellanos-Martínez S., 2020. Hemocyte cell types of the cortes geoduck, Panopea globosa (Dall 1898), from the gulf of California, Mexico // Fish Shellfi sh Immunol. V. 100. P. 230- 237. http s://doi.org/10.1016/j.fsi.2020.03.013
125. Hertel L. A., Adema CM., Loker E. S., 2005. Differential expression of FREP genes in two strains of Biomphalaria glabrata following exposure to the digenetic trematodes Schistosoma mansoni and Echi-nostoma paraensei // Dev. Comp. Immunol. V. 29. № 4. P. 295-303. https://doi.org/10.1016/j.dci.2004.08.003
126. Horak P., Deme R., 1998. Lectins and saccharides in Lymnaea stag-nalis hemocyte recognition // Comp. Haematol. Int. V. 8 № 4. P. 210-218. https://doi.org/10.1007/BF02752851
127. Hu X., Hu X., Hu B., Wen C., Xie Y., Wu D., et al., 2014. Molecular cloning and characterization of cathepsin L from freshwater mussel, Cristaria plicata // Fish Shellfi sh Immunol. V. 40. № 2. P. 446-454. https://doi.org/10.1016/j. fsi.2014.07.005
128. Huang B., Zhang L., Li L., Tang X., Zhang G., 2015. Highly diverse fi brinogen-related proteins in the Pacifi c oyster Crassostrea gigas // Fish Shellfish Immunol. V. 43. № 2. P. 485-490. https://doi. org/10.1016/j.fsi.2015.01.021
129. Hubert F., Noel T., Roch P., 1996. A member of the arthropod defen-sin family from edible Mediterranean mussels (Mytilus galloprovin-cialis). Eur J Biochem FEBS. 240. № 302-306.
130. Hughes T. K., Smith E. M., Chin R., Cadet P., Sinisterra J., Leung M. K., et al., 1990. Interaction of immunoreactive monokines (interleukin 1 and tumor necrosis factor) in the bivalve mollusc Mytilus edulis // Proc. Natl. Acad. Sci. U S A. V. 87. № 12. P. 4426- 4429. https://doi.org/10.1073/pnas.87.12.4426
131. Hughes T. K., Smith E. M., Barnett J. A., Charles R., Stefano G. B., 1991. LPS stimulated invertebrate hemocytes: a role for immunore-active TNF and IL-1 // Dev. Comp. Immunol. V. 15. № 3. P. 117- 122. https://doi.org/10.1016/0145-305x(91)90002-g
132. Hughes, T. K., Smith, E. M., Leung, M. K., Stefano, G. B., 1992. Evidence for the conservation of an immunoreactive monokine network in invertebrates // Ann. N Y Acad. Sci. V. 650. P. 74-80. https:// doi.org/10.1111/j.1749-6632.1992.tb49098.x
133. Humphries J. E., Yoshino T. P., 2008. Regulation of hydrogen peroxide release in circulating hemocytes of the planorbid snail Biomphal-aria glabrata // Dev. Comp. Immunol. V. 32. № 5. P. 554-562. https:// doi.org/10.1016/j.dci.2007.09.001
134. Hyman L. H., 1967. The Invertebrates. Volume VI. Mollusca I. Apla-cophora, Polyplacophora, Monoplacophora, Gastropoda. The coelomate Bilateria. McGraw-Hill, New York. 792 p.
135. Iguchi S. M.M., Momoi T. M., Egawa K., Matsumoto J. J., 1985. An N-acetylneuraminic acid-specifi c lectin from the body surface mucus of African giant snail // Comp. Biochem. Physiol. V. 81. №- P. 897- 900. https://doi.org/ 10.1016/0305-0491(85)90085-9
136. Itoh N., Xue Q. G., Schey K. L., Li Y., Cooper R. K., La Peyre J. F., 2011. Characterization of the major plasma protein of the eastern oyster, Crassostrea virginica, and a proposed role in host defense // Comp. Biochem. Physiol. B Biochem. Mol. Biol. V. 158. № 1. P. 9-22. https://doi.org/10.1016/j.cbpb.2010.06.006
137. Ittiprasert W., Miller A., Myers J., Nene V., El-Sayed N. M., Knight M., 2010. Identifi cation of immediate response genes dominantly expressed in juvenile resistant and susceptible Biomphalaria gla-brata snails upon exposure to Schistosoma mansoni // Mol. Biochem. Parasitol. V. 169. № 1. P. 27-39. https://doi.org/10.1016/j.molbiopa-ra.2009.09.009
138. Janeway C. A.Jr, Medzhitov R., 2002. Innate immune recognition // Annu. Rev. Immunol. V. 20. P. 197-216. https://doi.org/ 10.1146/ annurev.immunol.20.083001.084359
139. Jemaa M., Morin N., Cavelier P., Cau J., Strub J. M., Delsert C., 2014. Adult somatic progenitor cells and hematopoiesis in oysters // J. Exp. Biol. V. 217. P. 3067-3077. https://doi.org/10.1242/jeb.106575
140. Jeong, K. H., Heyneman D., 1976. Leukocytes of Biomphalaria gla-brata: morphology and behavior of granulocytic cell in vitro // J. In-vertebr. Pathol. V. 28. № 3. P. 357-362. https://doi.org/10.1016/0022-2011(76)90011-2
141. Jeong K. H., Lie K. J., Heyneman D., 1983. The ultrastructure of the amebocyte-producing organ in Biomphalaria glabrata // Dev. Comp. Immunol. V. 7. № 2. P. 217-228. https://doi.org/10.1016/0145- 305x(83)90003-4
142. Jiang Y., Loker E. S., Zhang S.-M. 2006. In vivo and in vitro knockdown of FREP2 gene expression in the snail Biomphalaria glabra-ta using RNA interference // Dev. Comp. Immunol. V. 30. № 10. P. 855-866. https://doi.org/10.1016/j.dci.2005.12.004
143. Joky A., Matricon-Gondran M., Benex J. 1985. Response to the amoe-bocyte-producing organ of sensitized Biomphalaria glabrata after exposure to Echinostoma caproni miracidia // J. Invertebr. Pathol. V. 45. № 1. P. 28-33. https://doi.org/ 10.1016/0022-2011(85)90045-x
144. Jourdane J., Cheng T. C., 1987. The two-phase recognition process of allografts in Brazilian strain of Biomphalaria glabrata // J. Inver-tebr. Pathol. V. 49. № 2. P. 145-158. https://doi.org/10.1016/0022-2011(87)90155-8
145. Kong P., Zhang H., Wang L., Zhou Z., Yang J., Zhang Y., et al., 2010. AiC1qDC-1, a novel gC1q-domain-containing protein from bay scallop Argopecten irradians with fungi agglutinating activity // Dev. Comp. Immunol. V. 34. № 8. P. 837-846. https://doi.org/10.1016/j. dci.2010.03.006
146. Kuchel R. P., Raftos D. A., Birch D., Vella N., 2010. Haemocyte morphology and function in the Akoya pearl oyster, Pinctada imbricata // J. Invertebr. Pathol. V. 105. № 1. P. 36-48. https://doi.org/10.1016/j. jip.2010.04.011
147. Kurosawa Y., Hashimoto K., 1996. The immoglobulin superfamily: where do invertebrate fi t in? In: Cooper E. (ed.). Advances in Comparative and Enviromental physiology, Berlin, Springer. V. 23. P. 151-184.
148. Lassalle D., Tetreau G., Pinaud S., Galinier R., Crickmore N., Gourbal B., Duval D., 2020. Glabralysins, potential new β-pore-forming toxin family members from the schistosomiasis vector snail Biomphal-aria glabrata // Genes. V. 11. № 1. P. 65. https://doi.org/10.3390/ genes11010065
149. Le Grand F., Soudant P., Marty Y., Le Goïc N., Kraffe E., 2013. Altered membrane lipid composition and functional parameters of circulating cells in cockles (Cerastoderma edule) affected by disseminated neoplasia // Chem. Phys. Lipids. V. 167-168. P. 9-20. https:// doi.org/10.1016/j.chemphyslip.2013.01.004.
150. Le Pabic C.,. Safi G, Serpentini A., LebelJ. M., Robin J. P., Koueta N., Prophenoloxidase system, lysozyme and protease inhibitor distribution in the common cuttlefi sh Sepia offi cinalis, Comp. Biochem. Physiol. Part B. Biochem. Mol. Biol. 172e173. 2014a. 96e104.
151. Le Pabic C., Goux D., Guillamin M., Safi G., Lebel J.-M., Koueta N., Serpentini A., 2014.b Hemocyte morphology and phagocytic activity in the common cuttlefi sh (Sepia offi cinalis) // Fish Shellfi sh Immunol. V. 40. № 2. P. 362-373. https://doi. org/10.1016/j.fsi.2014.07.020
152. Li J., Chen J., Zhang Y., Yu Z., 2013a. Expression of allograft in-fl ammatory factor-1 (AIF-1) in response to bacterial challenge and tissue injury in the pearl oyster, Pinctada martensii // Fish Shell-fi sh Immunol. V. 34. № 1. P. 365-371. https://doi.org/10.1016/j. fsi.2012.11.012
153. Li L., Zhao J., Wang L., Qiu L., Song L., 2013b. Genomic organization, polymorphisms and molecular evolution of the goose-type lyso-zyme gene from Zhikong scallop Chlamys farreri // Gene. V. 513. № 1. P. 40-52. https://doi.org/10.1016/j.gene.2012.10.080
154. Li J., Zhang Y., Zhang Y., Xiang Z., Tong Y., Qu F., Yu Z., 2014. Genomic characterization and expression analysis of fi ve novel IL-17 genes in the Pacifi c oyster, Crassostrea gigas // Fish Shellfi sh Immunol. V. 40 №, 455-465. https://doi.org/10.1016/j.fsi.2014.07.026
155. Li C., Qu T., Huang B., Ji P., Huang W., Que H., et al., 2015a. Cloning and characterization of a novel caspase-8-like gene in Crassostrea gigas // Fish Shellfi sh Immunol. V. 46. № 2. P. 486-492. https://doi. org/10.1016/j.fsi.2015.06.035
156. Li H., Zhang H., Jiang S., Wang W., Xin L., Wang H., et al., 2015b. A single-CRD C-type lectin from oyster Crassostrea gigas mediates immune recognition and pathogen elimination with a potential role in the activation of complement system // Fish Shellfi sh Immunol. V. 44, № 2. P. 566-575. https://doi.org/10.1016/j.fsi.2015.03.011
157. Li H., Zhang H., Jiang S., Wang W., Xin L., Wang H., Wang L., and Song L., 2015с. A single-CRD C-type lectin from oyster Crassostrea gigas mediates immune recognition and pathogen elimination with a potential role in the activation of complement system. Fish Shell-fi sh Immunol. 44, 566-575
158. Li Y., Song X., Wang W., Wang L., Yi Q., Jiang S., et al., 2017. The hematopoiesis in gill and its role in the immune response of Pa-cifi c oyster Crassostrea gigas against secondary challenge with Vibrio splendidus // Dev. Comp. Immunol. V. 71. P. 59-69. https://doi. org/10.1016/j.dci.2017.01.024
159. Li H., Hambrook J. R., Pila E. A., Gharamah A. A., Fang J., Wu X., Hanington P., 2020. Coordination of humoral immune factors dictates compatibility between Schistosoma mansoni and Biomphalaria gla-brata // Elife. V. 9. P. e51708. https://doi.org/10.7554/eLife.51708
160. Liao Z., Wang X., Liu H., Fan M., Sun J., Shen W., et al., 2013. Molecular characterization of a novel antimicrobial peptide from Mytilus coruscus // Fish Shellfi sh Immunol. V. 34. № 2. P. 610- 616. https://doi.org/10.1016/j. fsi.2012.11.030
161. Lie K. J., Heyneman D., 1975. Studies on resistance in snails: a spe-cifi c tissue reaction to Echinostoma lindoense in Biomphalaria gla-brata snails // Int. J. Parasitol. V. 5. P. 621-625. https://doi.org/ 10.1016/0020-7519(75)90061-2
162. Lie K. J., Heyneman D., 1976. Studies on resistance in snails. 6. Escape of Echinostoma lindoense sporocysts from encapsulation in the snail heart and subsequent loss of the host’s ability to resist infection by the same parasite // J. Parasitol. V. 62. № 2. P. 298-302.
163. Lie K. J., Heyneman D., Yau P., 1975. The origin of amebocytes in Biomphalaria glabrata // J. Parasitol. V. 61. № 3. P. 574-576.
164. Lie K. J., Heyneman D., Jeong K. H., 1976. Studies on resistance in snails. 4. Induction of ventricular capsules and changes in the ame-bocyte-producing organ during sensitization of Biomphalaria gla-brata snails // J. Parasitol. V. 62. № 2. P. 286-291.
165. Liu L., Yang J., Qiu L., Wang L., Zhang H., Wang M., Vinu S. S., Song, L., 2011. A novel scavenger receptor-cysteine-rich (SRCR) domain containing scavenger receptor identifi ed from mollusk mediated PAMP recognition and binding // Dev. Comp. Immunol. 35, 227-239.
166. Liu C., Jiang S., Wang M., Wang L., Chen H., Xu J., Lv Z., Song L. 2016a. A novel siglec (CgSiglec-1) from the Pacifi c oyster (Crassostrea gigas) with broad recognition spectrum and inhibitory activity to apoptosis, phagocytosis and cytokine release // Dev. Comp. Immunol. 61, 136-144.
167. Liu C., Wang M., Jiang S., Wang L., Chen H., Liu Z., Qiu L., Song L. 2016b. A novel junctional adhesion molecule A (CgJAM-A-L) from oyster (Crassostrea gigas) functions as pattern recognition receptor and opsonin // Dev. Comp. Immunol. 55, 211-220.
168. Lockyer A. E., Spinks J. N., Walker A. J., Kane R. A., Noble L. R., Rollinson D., et al., 2007. Biomphalaria glabrata transcriptome: Identifi cation of cell-signalling, transcriptional control and immune- related genes from open reading frame expressed sequence tags (ORESTES) // Dev. Comp. Immunol. V. 31. № 8. P. 763-782. https:// doi.org/10.1016/j.dci.2006.11.004
169. Lockyer A. E., Emery A. M., Kane R. A., Walker A. J., Mayer C. D., MittaG., Coustau C., et al., 2012. Early differential gene expression in haemocytes from resistant and susceptible Biomphalaria glabra-ta strains in response to Schistosoma mansoni // PLoS One. V. 7. № 12. P. e51102. https://doi.org/10.1371/journal.pone.0051102
170. Loker E. S., Bayne C. J., Buckley P. M., Kruse K. T., 1982. Ultra-structure of encapsulation of Schistosoma mansoni mother sporocysts by hemocytes of the juveniles of the 10-R2 strain of Biomphalaria glabrata (Mollusca: Gastropoda) // J. Parasitol. V. 68. № 1. P. 84-94.
171. Loker E. S., Adema C. M., Zhang S.-M., Kepler T., 2004. Invertebrate immune systems - not homogeneous, not simple, not well understood // Immunol. Rev. V. 198. P. 10-24. https://doi.org/10.1111/ j.0105-2896.2004.0117.x
172. Lu L., Loker E. S., Adema C. M., Zhang S.-M., Bu L., 2020. Genom-ic and transcriptional analysis of genes containing fi brinogen and IgSF domains in the schistosome vector Biomphalaria glabrata, with emphasis on the differential responses of snails susceptible or resistant to Schistosoma mansoni // PLoS Negl. Trop. Dis. V. 14. № 10. P. e0008780. https://doi.org/10.1371/journal.pntd.0008780
173. Mahilini H. M., Rajendran A., 2008. Categorization of hemocytes of three gastropod species Trachea vittata (Muller), Pila globosa (Swain-son) and Indoplanorbis exustus (Dehays) // J. Invertebr. Pathol. V. 97. № 1. P. 20-26. https://doi.org/10.1016/j.jip.2007.07.007
174. Malham S. K., Runham N. W., Secombes C. J., 1997. Phagocytosis by haemocytes from the lesser octopus Eledone cirrhosa // Iberus. V. 15. № 2. P. l-11.
175. Malham S. K., Coulson C. L., Runham N. W., 1998. Effects of repeated sampling on the haemocytes and haemolymph of Eledone cirrhosa (Lam.) // Comp. Biochem. Physiol. A Mol. Integr. Physiol. V. 121. P. 431-440. https://doi.org/10.1016/S1095-6433(98)10154-X
176. Martín-Gómez L., Villalba A., Carballal M. J., Abollo E., 2014. Molecular characterisation of TNF, AIF, dermatopontin and VAMP genes of the fl at oyster Ostrea edulis and analysis of their modulation by diseases // Gene. V. 533. P. 208-217. https://doi.org/10.1016/j. gene.2013.09.085
177. Martinez-Lopez A., Encinar J. A., Medina-Gali R. M., Balseiro P., Val-tanen P. G., Figueras A., et al., 2013. pH-dependent solution structure and activity of a reduced form of the host-defense peptide my-ticin C (Myt C) from the mussel Mytilus galloprovincialis // Mar. Drugs. V. 11. № 7. P. 2328-2346. https://doi.org/10.3390/ md11072328
178. Martins-Souza R. L., Pereira C. A.J., Coelho P. M.Z., Martins-Fil-ho O. A., Negrão-Corrêa D., 2009. Flow cytometry analysis of the circulating haemocytesfrom Biomphalaria glabrata and Biomphalaria tenagophila following Schistosoma mansoni infection // Parasitology. V. 136. № 1. P. 67-76. https://doi.org/10.1017/S0031182008005155
179. Matozzo V., Marina M. G., Cimaa F., Ballarina L., 2008. First evidence of cell division in circulating haemocytes from the Manila clam Tapes philippinarum// Cell Biol. Inter. V. 32. № 7. P. 865-868. https://doi. org/10.1016/j.cellbi.2008.03.008
180. Matricon-Gondran M., Letocart M., 1999. Internal defenses of the snail Biomphalaria glabrata. I. Characterization of hemocytes and fi xed phagocytes // J. Invertebr. Pathol. V. 74. № 3. P. 224-234. https:// doi.org/10.1006/jipa.1999.4876
181. Melillo D., Marino R., Italiani P., Boraschi D., 2018. Innate immune memory in invertebrate metazoans: A critical appraisal // Front. Immunol. V. 9. P.1915. https://doi.org/10.3389/fi mmu.2018.01915
182. Mitta G., Hubert F., Noël T., Roch P., 1999. Myticin, a novel cysteine-rich antimicrobial peptide isolated from haemocytes and plasma of the mussel Mytilus galloprovincialis // Eur. J. Biochem. FEBS. V. 265. № 1. P. 71-78. https://doi.org/10.1046/j.1432-1327.1999.00654.x
183. Mitta G., Galinier R., Tisseyre P., Allienne J.-F., Girerd-Chambaz Y., Guillou F., et al., 2005. Gene discovery and expression analysis of immune-relevant genes from Biomphalaria glabrata hemocytes // Dev. Comp. Immunol. V. 29. № 5. P. 393-407. https://doi.org/10.1016/j. dci.2004.10.002
184. Mitta G., Adema C. M., Gourbal B., Loker E. S., Theron A., 2012. Compatibility polymorphism in snail/schistosome interactions: From fi eld to theory to molecular mechanisms // Dev. Comp. Immunol. V. 37. № 1. P. 1-8. https://doi.org/10.1016/j.dci.2011.09.002
185. Mone Y., Gourbal B., Duval D., Du Pasquier L., Kieffer-Jaquinod S., Mitta G., 2010. A large repertoire of parasite epitopes matched by a large repertoire of host immune receptors in an invertebrate host/ parasite model // PLoS Negl. Trop. Dis. V. 4. № 9. P. e813. https:// doi.org/10.1371/journal.pntd.0000813
186. Monolisha S., Mani A. E., Patterson J., Patterson Edward J. K., 2013. Molecular characterization and antimicrobial activity of Octopus ae-gina and Octopus dolfusii in gulf of mannar coast // IJPSR. V. 4. № 9. P. 3582-3587. https://doi.org/10.13040/IJPSR.0975-8232.4(9). 3582-87
187. Monteil J. F., Matricon-Gondran M., 1991. Hemocyte production in trematode-infected Lymnaea truncatula // Parasitol. Res. V. 77. № 6. P. 491-497. https://doi.org/10.1007/BF00928416
188. Moreira R., Balseiro P., Planas J. V., Fuste B., Beltran S., Novoa B., Figueras A., 2012. Transcriptomics of in vitro immune-stimulated hemocytes from the Manila clam Ruditapes philippinarum using high-throughput sequencing // PLoS One. V. 7. № 4. P. e35009. https://doi.org/10.1371/journal.pone.0035009
189. Moreira R., Milan M., Balseiro P., Romero A., Babbucci M., Figueras A., et al., 2014. Gene expression profi le analysis of Manila clam (Ruditapes philippinarum) hemocytes after a Vibrio alginolyticus challenge using an immune-enriched oligo-microarray // BMC Genom-ics. V. 15. P. 267. https://doi.org/10.1186/1471-2164-15-267
190. Mount A. S., Wheeler A. P., Paradkar R. P., Snider D., 2004. Hemo-cyte-mediated shell mineralization in the Eastern oyster // Science. V. 304. № 5668. P. 297-300. https://doi.org/10.1126/science.1090506
191. Myers J., Ittiprasert W., Raghavan N., Miller A., Knight M., 2008. Differences in cysteine protease activity in Schistosoma mansoni resistant and susceptible Biomphalaria glabrata and characterization of the hepatopancreas cathepsin B full-length cDNA // J. Invertebr. Pathol. V. 94. № 3. P. 659-668. https://doi.org/10.1645/GE-1410.1
192. Nakayama K., Nomoto A. M., Nishijima M., Maruyama T., 1997. Morphological and fuctional characterization of hemocytes in the giant clam Tridacna crocea // J. Invertebr. Pathol. V. 69. № 2. P. 105-111. https://doi.org/10.1006/jipa.1996.4626
193. Nilsen I. W., Overbø K., Sandsdalen E., Sletten K., Myrnes B., 1999. Protein purifi cation and gene isolation of chlamysin, a cold-active lysozyme-like enzyme with antibacterial activity // FEBS Lett. V. 464. № 3. P. 153-158. https://doi.org/10.1016/s0014-5793(99)01693-2
194. Novas A., Barcia R., Ramos-Martínez J. I., 2007. Nitric oxide production by haemocytes from Mytilus galloprovincialis shows seasonal variations // Fish Shellfi sh Immunol. V. 23. № 4. P. 886-891. https:// doi.org/10.1016/j.fsi.2007.04.007
195. Novoa B., Tafalla C., Guerra A., Figueras A., 2002. Cellular immuno-logical parameters of the octopus, Octopus vulgaris // J. Shellfi sh R. V. 21. № 1. P. 243-248.
196. Novoa B., Romero A., Álvarez A. L., Moreira R., Pereiro P., Costa M. M., et al., 2016. Antiviral activity of myticin c peptide from mussel: an ancient defense against herpesviruses // J. Virol. V. 90. № 17. P. 7692-702. https://doi.org/10.1128/JVI.00591-16
197. Olafsen J. A., 1988. Roles of lectins in invertebrate humoral defense. In: Fisher W. S. (ed.). Disease Processes of Marine Bivalve Molluscs. Am. Fish. Soc. P. 189-205.
198. Ottaviani E., Franchini A., 1988. Ultrastructural study of haemocytes of the freshwater snail Planorbarius corneus (Gastropoda, Pulmo-nata) // Acta Zool. V. 69. №3. P. 157-162.
199. Ottaviani E., Malagoli D., Franchini A., 2004. Invertebrate humoral factors: cytokines as mediators of cell survival // Prog. Mol. Subcell. Biol. V. 34. P. 1-25. https://doi.org/10.1007/978-3-642-18670-7_1
200. Oyanedel D., Gonzalez R., Flores-Herrera P., Brokordt K., Rosa R. D., Mercado L., Schmitt P., 2016. Molecular characterization of an inhibitor of NF-κB in the scallop Argopecten purpuratus: First insights into its role on antimicrobial peptide regulation in a mollusk // Fish Shellfish Immunol. V. 52. P. 85-93. https://doi.org/10.1016/j. fsi.2016.03.021
201. Pan C. T., 1958. The general histology and topographic microanatomy of Australorbis glabratus // Bull. Mus. Comp. Zool. V. 119. P. 237- 299. https://doi.org/10.5962/BHL.PART.10008
202. Parisi M.-G., Toubiana M., Mangano V., Parrinello N., Cammarata M., Roch P., 2012. MIF from mussel: coding sequence, phylogeny, polymorphism, 3D model and regulation of expression // Dev. Comp. Immunol. V. 36. № 4. P. 688-696. https://doi.org/10.1016/j.dci.2011.10.014
203. Parrino V., Costa G., Cannavà C., Fazio E., Bonsignore M., Concetta S., et al., 2019. Flow cytometry and micro-Raman spectroscopy: Iden-tifi cation of hemocyte populations in the mussel Mytilus gallopro-vincialis (Bivalvia: Mytilidae) from Faro Lake and Tyrrhenian Sea (Sicily, Italy) // Fish Shellfi sh Immunol. V. 87. P. 1-8. https://doi. org/10.1016/j.fsi.2018.12.067
204. Pees B., Yang W., Zarate-Potes A., Schulenburg H., Dierking K., 2016. High innate immune specifi city through diversifi ed C-type lectin-like domain proteins in invertebrates // J. Innate Immun. V. 8. № 2. P. 129-142. https://doi.org/10.1159/000441475
205. Pengsakul T., Suleiman Y. A., Cheng Z., 2013. Morphological and structural characterization of haemocytes of Oncomelania hupensis (Gastropoda: Pomatiopsidae) // Ital. J. Zool. V. 80. № 4. P. 494-502. https://doi.org/10.1080/11250003.2013.825654
206. Pila E. A., Sullivan J. T., Wu X. Z., Fang J., Rudko S. P., Gordy M. A., Hanington P. C., 2016a. Haematopoiesis in molluscs: A review of haemocyte development and function in gastropods, cephalopods and bivalves // Dev. Comp. Immunol. V. 58. P. 119-128. https://doi. org/10.1016/j.dci.2015.11.010
207. Pila E. A., Tarrabain M., Kabore A. L., Hanington P. C., 2016b. A novel Toll-like receptor (TLR) infl uences compatibility between the gastropod Biomphalaria glabrata, and the digenean trematode Schisto-soma mansoni // PLoS Pathog. V. 12. № 3. P. e1005513. https://doi. org/10.1371/journal.ppat.1005513
208. Pila E. A., Li H., Hambrook J. R., Wu X., Hanington P. C., 2017. Schistosomiasis from a snail’s perspective: advances in snail immunity // Trends Parasitol. V. 33. № 11. P. 845-857. https://doi. org/10.1016/j.pt.2017.07.006
209. Pinaud S., Portela J., Duval D., Nowacki F. C., Olive M. A., Allienne J.-F., et al., 2016. A shift from cellular to humoral responses contributes to innate immune memory in the vector snail Biomphal-aria glabrata // PLoS Pathog. V. 12. № 1. P. e1005361. https://doi. org/10.1371/journal.ppat.1005361
210. Pinaud S., Portet A., Allienne J.-F., Belmudes L., Saint-Beat C., Aran-cibia N., et al., 2019. Molecular characterization of immunological memory following homologous or heterologous challenges in the schistosomiasis vector snail, Biomphalaria glabrata // Dev. Comp. Immunol. V. 92. P. 238-252. https://doi.org/10.1016/j.dci.2018.12.001
211. Pipe R. K., Farley S. R., Coles J. A., 1997. The separation and characterisation of haemocytes from the mussel Mytilus edulis // Cell Tissue Res. V. 289. № 3. P. 537-545. https://doi.org/10.1007/s004410050899
212. Portela J., Duval D., Rognon A., Galinier R., Boissier J., Coustau C., et al., 2013. Evidence for specifi c genotype-dependent immune priming in the Lophotrochozoan Biomphalaria glabrata snail // J. Innate Immun. V. 5. № 3. P. 261-276. https://doi.org/10.1159/000345909
213. Portet A., Galinier R., Pinaud S., Portela J., Nowacki F., Gourbal B., Duval D., 2018. BgTEP: an antiprotease involved in innate immune sensing in Biomphalaria glabrata // Front. Immunol. V. 9. P. 1206. https://doi.org/10.3389/fi mmu.2018.01206.
214. Portet A., Pinaud S., Chaparro C., Galinier R., Dhelly N. M., Portela J., et al., 2019. Sympatric and allopatric evolutionary contexts shape differential immune response in Biomphalaria/Schistosoma interaction // PLoS Pathog. V. 15. № 3. P. e1007647. https://doi.org/10.1371/ journal.ppat.1007647
215. Povelones M., Tran K., Thanos D., Ambron R. T., 1997. An NF-κB-like transcription factor in axoplasm is rapidly inactivated after nerve injury in Aplysia // J. Neurosci. V. 17. № 13. P. 4915-4920. https:// doi.org/10.1523/JNEUROSCI.17-13-04915.1997
216. Prado-Alvarez M., Rotllant J., Gestal C., Novoa B., Figueras A., 2009. Characterization of a C3 and a factor B-like in the carpet-shell clam, Ruditapes decussatus // Fish Shellfi sh Immunol. V. 26. № 2. P.305-315. https://doi. org/10.1016/j.fsi.2008.11.015
217. Qin C., Huang W., Zhou S., Wang X., Liu H., Fan M., et al., 2014. Characterization of a novel antimicrobial peptide with chiting-biding domain from Mytilus coruscus // Fish Shellfi sh Immunol. V. 41. № 2. P. 362-370. https://doi. org/10.1016/j.fsi.2014.09.019
218. Qiu L., Song L., Xu W., Ni D., Yu Y., 2007. Molecular cloning and expression of a Toll receptor gene homologue from Zhikong Scallop, Chlamys farreri // Fish Shellfi sh Immunol. V. 22. № 5. P. 451-466. https://doi. org/10.1016/j.fsi.2006.05.003
219. Rader B. A., Kremer N., Apicella M. A., Goldman W. E., McFall-Ngai M. J., 2012. Modulation of symbiont lipid A signaling by host alkaline phosphatases in the squid-Vibrio symbiosis // mBio. V. 3. № 3. P. e00093-12. https://doi.org/10.1128/ mBio.00093-12
220. Ray M., Bhunia N. S., Bhunia A. S., Ray S., 2013. A co mparative analyses of morphological variations, phagocytosis and generation of cytotoxic agents in fl ow cytometrically isolated hemocytes of Indian molluscs // Fish Shellfi sh Immunol. V. 34. № 1. P. 244-253. https:// doi.org/10.1016/j.fsi.2012.11.006.
221. Renwrantz L., 1986. Lectins in molluscs and arthropods: their occurrence, origin and roles in immunity // Lackie A. M. (ed.). Immune mechanisms in invertebrate vectors. Oxford, Oxford Scientifi c Publications. P. 81-93.
222. Rinkevich B., Müller W. E.G., 1996. Invertebrate Immunology. Spring-er-Verlag Berlin Heidelberg. 250 p. https://doi.org/10.1007/978-3-642-79735-4
223. Roberts S., Gueguen Y., De Lorgeril J., Goetz F., 2008. Rapid accumulation of an interleukin 17 homolog transcript in Crassostrea gigas hemocytes following bacterial exposure // Dev. Comp. Immunol. V. 32. № 9. P. 1099-1104. https://doi.org/10.1016/j.dci.2008.02.006
224. Romero A., Dios S., Poisa-Beiro L., Costa M. M., Posada D., Figueras A., Novoa B., 2011. Individual sequence variability and functional activities of fi brinogen-related proteins (FREPs) in the Mediterranean mussel (Mytilus galloprovincialis) suggest ancient and complex immune recognition models in invertebrates // Dev. Comp. Immunol. V. 35. № 3. P. 334-344. https://doi.org/10.1016/j.dci.2010.10.007
225. Romero A., Aranguren R., Moreire R., Novoa B., Figueras A., 2019. Integrated transcriptomic and functional immunological approach for assessing the invasiveness of bivalve alien species // Sci. Rep. V. 9. № 1. P. 19879. https://doi.org/10.1038/s41598-019-56421-y
226. Rodelaud D., Barthe D., 1981. The development of the amoebocyte- producing organ in Lymnaea truncatula Müller infected by Fasciola hepatica L. // Z. Parasitenkd. V. 65. № 3. P. 331-341. https://doi. org/10.1007/BF00926728
227. Rowley A. F., Powell A., 2007. Invertebrate immune systems-specifi c, quasi-specifi c, or nonspecifi c? // J. Immunol. V. 179. № 11. P. 7209- 7214. https://doi.org/10.4049/jimmunol.179.11.7209
228. Ruddell C. L., 1971. The fi ne structure of the granular amebocytes of the pacifi c oyster, Crassostrea gigas // J. Invertebr. Pathol. V. 18. № 2. P. 269-275. https://doi.org/10.1016/0022-2011(71)90155-8
229. Saco A., Rey-Campos M., Novoa B., Figueras A., 2020. Transcriptomic response of mussel gills after a Vibrio splendidus infection demonstrates their role in the immune response // Front. Immunol. V. 11. P. 615580. https://doi.org/10.3389/fi mmu.2020.615580
230. Salamat Z., Sullivan J. T., 2008. In vitro mitotic responses of the amebocyte-producing organ of Biomphalaria glabrata to extracts of Schistosoma mansoni // J. Parasitol. V. 94. № 5. P. 1170-1173. https://doi.org/10.1645/GE-1554.1
231. Salamat Z., Sullivan J., 2009. Involvement of protein kinase C signalling and mitogen-activated protein kinase in the amebocyte-producing organ of Biomphalaria glabrata (Mollusca) // Dev. Comp. Immunol. V. 33. № 6. P. 725-727. https://doi.org/10.1016/j. dci.2009.01.001
232. Salazar K. A., Joffe N. R., Dinguirard N., Houde P., Castillo M. G., 2015. Transcriptome analysis of the white body of the Squid Eu-prymna tasmanica with emphasis on immune and hematopoietic gene discovery // PLoS One. V. 10. № 3. P. 1-20. https://doi. org/10.1371/journal.pone.0119949
233. Sasaki Y., Furuta E., Kirinoki M., Seo N., Matsuda H., 2003. Comparative studies of the internal defense system of schistosome-resis-tant and -susceptible amphibious snail Oncomelania nosophora: 1. Comparative morphological and functional studies on hemocytes from both snails // Zoolog. Sci. V. 20. № 10. P. 1215-1222. https://doi. org/10.2108/zsj.20.1215
234. Sathyan N., Philip R., Chaithanaya E. R., Kumar P. R.A., 2012. Iden-tifi cation and molecular characterization of molluskin, a histone-H2A-derived antimicrobial peptide from molluscs // ISRN Mol. Biol. V. 2012. P. 219656. https://doi.org/10.5402/2012/219656
235. Schell S. C., 1965. The life history of Haematoloechus breviplexus Stafford, 1902 (Trematoda: Haplometridae McMullen, 1937) with emphasis on the development of the sporocysts // J. Parasitol. V. 51. № 4. P. 587-593.
236. Schleicher T. R., VerBerkmoes N. C., Shah M., Nyholm S. V., 2014. Colonization state infl uences the hemocyte proteome in a benefi cial squid-Vibrio symbiosis // Mol. Cell Proteomics. V. 13. № 10. P. 2673- 2686. https://doi.org/10.1074/mcp.M113.037259
237. Schmitt P., Gueguen Y., Desmarais E., Bachère E., De Lorgeril J., 2010. Molecular diversity of 1569 antimicrobial effectors in the oyster Crassostrea gigas // BMC Evol. Biol. V. 10. P. 23. https://doi. org/10.1186/1471-2148-10-23
238. Schmitt P., Rosa R. D., Duperthuy M., de Lorgeril J., Bachère E., Destoumieux-Garzón D., 2012. The antimicrobial defense of the pa-cifi c oyster, Crassostrea gigas. How diversity may compensate for scarcity in the regulation of resident/pathogenic microfl ora // Front Microbiol. V. 3. P. 160. https://doi.org/10.3389/fmicb.2012.00160
239. Schultz J. H., Adema C. M., 2017. Comparative immunogenomics of molluscs // Dev. Comp. Immunol. V. 75. P. 3-15. https://doi.org/ 10.1016/j.dci.2017.03.013
240. Seppälä O., Leicht K., 2013. Activation of the immune defence of the freshwater snail Lymnaea stagnalis by different immune elicitors // J. Exp. Biol. V. 216. P. 2902-2907. https://doi.org/10.1242/jeb.084947
241. Seppälä O., Walser J.-C., Cereghetti T., Seppälä K., Salo T., Ade-ma C. M., 2021. Transcriptome profi ling of Lymnaea stagnalis (Gastropoda) for ecoimmunological research // BMC Genomics. V. 22. № 1. P. 144. https://doi.org/10.1186/s12864-021-07428-1
242. Sminia T., 1972. Structure and function of blood and connective tissue cells of the fresh-water pulmonate Lymnea stagnalis studied by electron microscopy and enzyme histochemistry // Z. Zellforsch. Mikrosk. Anat. V. 130. № 4. P. 497-526. https://doi.org/10.1007/BF00307004
243. Sminia T., 1974. Haematopoiesis in the freshwater snail Lymnaea stagnalis studied by electron microscopy and autoradiography // Cell Tissue Res. V. 150. № 4. P. 443-454. https://doi.org/10.1007/ BF00225968
244. Sminia T., 1981. Gastropods // Ratcliffe N. A., Rowley A. F. (eds.). Invertebrate Blood Cells. V. I. London, Academic Press. P. 190-232.
245. Sminia T., van der Knaap W. P.W., van Asselt L. A., 1983. Blood cell types and blood cell formation in gastropod molluscs // Dev. Comp. Immunol. V. 7. № 4. P. 665-668. https://doi.org/10.1016/0145- 305X(83)90089-7
246. Smolowitz R.M, Miosky D., Reinisch C. L., 1989. Ontogeny of leukemic cells of the soft shell clam // J. Invertebr. Pathol. V. 53. № 1. P. 41-51. https://doi.org/10.1016/0022-2011(89)90072-4
247. Söderhäll K., 2010. Invertebrate immunity. Springer, Boston, MA. 316 p. https://doi.org/10.1007/978-1-4419-8059-5
248. Song, L., Xu, W., Li, C., Li, H., Wu, L., Xiang, J., Guo, X., 2006. Development of expressed sequence tags from the bay scallop, Ar-gopecten irradians irradians // Mar. Biotechnol. (NY). V. 8. № 2. P. 161-169. https://doi.org/10.1007/s10126-005-0126-4
249. Song L., Wang L., Qiu L., Zhang H., 2010. Bivalve immunity. In: Söderhäll K. (ed.). Invertebrate immunity. Springer, Boston, MA. P. 44-65. https://doi.org/10.1007/978-1-4419-8059-5
250. Sonthi M., Toubiana M., Pallavicini A., Venier P., Roch P., 2011. Diversity of coding sequences and gene structures of the antifungal peptide mytimycin (MytM) from the Mediterranean mussel, Mytilus galloprovincialis // Mar. Biotechnol. (NY). V. 13. № 5. P. 857-867. https://doi.org/10.1007/s10126-010-9345-4
251. Soudant P., Chu F.-L.E., Volety A., 2013. Host-parasite interactions: Marine bivalve molluscs and protozoan parasites, Perkinsus species // J. Invertebr. Pathol. V. 114. № 2. P. 196-216. https://doi.org/10.1016/j. jip.2013.06.001
252. Souza S. S., Andrade Z. A., 2006. On the origin of the Biomphalaria glabrata hemocytes // Mem. Inst. Oswaldo Cruz. V. 101. P. 213-218. https://doi.org/10.1590/s0074-02762006000900033
253. Stuart A. E., 1968. The reticulo-endothelial apparatus of the lesser octopus Eledone cirrhosa // J. Pathol. Bacteriol. V. 96. № 2. P. 401- 412. https://doi.org/10.1002/path.1700960218
254. Stumpf J. L., Gilbertson D. E., 1978. Hemocytes of Biomphalaria gla-brata: Factors affecting variability // J. Invertebr. Pathol. V. 32. № 2. P. 177-181. https://doi.org/10.1016/0022-2011(78)90027-7
255. Sullivan J. T., 1988. Hematopoiesis in three species of gastropods following infection with Echinostoma paraensei (Trematoda: Echi-nostomatidae) // Trans. Am. Microsc. Soc. V. 107. № 4. P. 335-361.
256. Sullivan J. T., 1990. Long-term survival of heterotopic allografts of the amoebocyte-producing organ in Biomphalaria glabrata (Mollusca: Pulmonata) // Trans. Am. Microsc. Soc. V. 109. № 1. P. 52-60.
257. Sullivan J. T., Spence J. V., 1999. Factors affecting adoptive transfer of resistance to Schistosoma mansoni in the snail intermediate host, Biomphalaria glabrata // J. Parasitol. V. 85. № 6. P. 1065-1071.
258. Sullivan J. T., Bulman C. A., Salamat Z., 2011. Effect of crude lipopolysaccharide from Escherichia coli O127:B8 on the amebocyte- producing organ of Biomphalaria glabrata (Mollusca) // Dev. Comp. Immunol. V. 35. № 11. P. 1182-1185. https://doi.org/10.1016/j. dci.2011.03.032
259. Sullivan J. T., Belloir J. A., Beltran R. V., Grivakis A., Ransone K. A., 2014. Fucoidan stimulates cell division in the amebocyte-producing organ of the schistosome-transmitting snail Biomphalaria glabrata // J. Invertebr. Pathol. V. 123. P. 13-16. https://doi.org/10.1016/j. jip.2014.09.005
260. Tanguy A., Guo X., Ford S. E., 2004. Discovery of genes expressed in response to Perkinsus marinus challenge in Eastern (Crassostrea virginica) and Pacifi c (C. gigas) oysters // Gene. V. 338. № 1. P.121- 131. https://doi.org/10.1016/j.gene.2004.05.019
261. Tanguy M., McKenna P., Gauthier-Clerc S., Pellerin J., Danger J.-M., Siah A., 2013. Sequence analysis of a normalized cDNA library of Mytilus edulis hemocytes exposed to Vibrio splendidus LGP32 strain // Results Immunol. V. 3. P. 40-50. https://doi.org/10.1016/j. rinim.2013.04.001
262. Tanguy M., Gauthier-Clerc S., Pellerin J., Danger J.-M., Siah A., 2018. The immune response of Mytilus edulis hemocytes exposed to Vibrio splendidus LGP32 strain: A transcriptomic attempt at identifying molecular actors // Fish and Shellfi sh Immunol. V. 74. P. 268-280. https://doi.org/10.1016/j.fsi.2017.12.038
263. Tetreau G., Pinaud S., Portet A., Galinier R., Gourbal B., Duval D., 2017. Specifi c pathogen recognition by multiple innate immune sensors in an invertebrate // Front. Immunol. V. 8. P. 1249. https://doi. org/10.3389/fi mmu.2017.01249
264. Tirape A., Bacque C., Brizard R., Vandenbulcke F., Boulo V., 2007. Expression of immune-related genes in the oyster Crassostrea gigas during ontogenesis // Dev. Comp. Immunol. V. 31. № 9. P. 859-873. https://doi.org/10.1016/j.dci.2007.01.005
265. Tripp M. R., 1974. Molluscan immunity // Ann. N. Y. Acad. Sci. V. 234. № 0. P. 23-27. https://doi.org/10.1111/j.1749-6632.1974.tb53016.x
266. Troncone L., De Lisa E., Bertapelle C., Porcellini A., Laccetti P., Po-lese G., Di Cosmo A., 2014. Morphofunctional characterization and antibacterial activity of haemocytes from Octopus vulgaris, J. Nat. Hist. http://dx.doi.org/10.1080/00222933.2013.826830.
267. Troncone L., De Lisa E., Bertapelle C., Porcellini A., 2015. Morpho-functional characterization and antibacterial activity of haemocytes from Octopus vulgaris // J. Nat. Hist. V. 49. № 21-24. P. 1457-1475. http://dx.doi.org/10.1080/00222933.2013.826830
268. van der Knaap W. P.W., 1981. Recognition of foreignness in the internal defence system of the fresh-water gastropod Lymnaea stagnalis // Dev. Comp. Immunol. V. 1. P. 91-97.
269. van der Knaap W. P.W., Loker E. S., 1990. Immune mechanisms in trematode - snail interactions // Parаsitol. Today. V. 6 № 6. P. 176- 182. https://doi.org/10.1016/0169-4758(90)90349-9
270. van der Knaap W. P.W., Adema C. M., Sminia T., 1993. Invertebrate blood cells: morphological and functional aspects of the haemocytes in the pond snail Lymnaea stagnalis // Comp. Haematol. Int. V. 3. P. 20-26.
271. Venier P., Pittà C. D., Bernante F., Vartto L., de Nardi B., Bovo G., et al., 2009. MytiBase: a knowledgebase of mussel (M. galloprovin-cialis) transcribed sequences // BMC Genomics. V. 10. P.72. https:// doi.org/10.1186/1471-2164-10-72
272. Wang M., Yang J., Zhou Z., Qiu L., Wang L., Zhang H., et al., 2011. A primitive Toll-like receptor signaling pathway in mollusk Zhikong scallop Chlamys farreri // Dev. Comp. Immunol. V. 35. № 4. P. 511- 520. https://doi.org/10.1016/j. dci.2010.12.005
273. Wang G., Li X., Li J., 2013a. Association between SNPs in interferon regulatory factor 2 (IRF-2) gene and resistance to Aeromonas hy-drophila in freshwater mussel Hyriopsis cumingii // Fish Shellfi sh Immunol. V. 34. № 5. P. 1366-1371. https://doi.org/10.1016/j.fsi. 2013.02.006
274. Wang Q., Wang C., Mu C., Wu H., Zhang L., Zhao J., 2013b. A novel C-type lysozyme from Mytilus galloprovincialis: insight into innate immunity and molecular evolution of invertebrate C-type lysozymes // PLoS One. V. 8. № 6. P. e67469. https://doi.org/10.1371/journal. pone.0067469
275. Wang Q., Zhang L., Yang D., Yu Q., Li F., Cong M., et al., 2015. Molecular diversity and evolution of defensins in the manila clam Ruditapes philippinarum // Fish Shellfi sh Immunol. V. 47. № 1. P. 302-312. https://doi. org/10.1016/j.fsi.2015.09.008
276. Wang L., Song X., Song L., 2018. The oyster immunity // Dev. Comp. Immunol. V. 80. P. 99-118. https://doi.org/10.1016/j.dci.2017.05.025
277. Wang W., Song X., Wang L., Song L., 2018. Pathogen-Derived Carbohydrate Recognition in Molluscs Immune Defense. Int. J. Mol. Sci. 19, 721
278. Wier A. M., Nyholm S. V., Mandel M. J., Massengo-Tiasse R. P., Schaefer A. L., Koroleva I., et al., 2010. Transcriptional patterns in both host and bacterium underlie a daily rhythm of anatomical and metabolic change in a benefi cial symbiosis // Proc. Natl. Acad. Sci. V. 107. № 5. P. 2259-2264. https://doi.org/10.1073/pnas. 0909712107
279. Wootton E. C., Pipe R. K., 2003. Structural and functional characterisation of the blood cells of the bivalve mollusk, Scrobicularia pla-na // Fish Shellfi sh Immunol. V. 15. № 3. P. 249-262. https://doi. org/10.1016/s1050-4648(02)00164-x
280. Wootton E. C., Dyrynda E. A., Ratcliffe N. A., 2003. Bivalve immunity: comparisons between the marine mussel (Mytilus edulis), the edible cockle (Cerastoderma edule) and the razor-shell (Ensis sili-qua) // Fish Shellfi sh Immunol. V. 15. № 3. P. 195-210. https://doi. org/10.1016/s1050-4648(02)00161-4
281. Wu X. J., Sabat G., Brown J. F., Zhang M., Taft A., Peterson N., et al., 2009. Proteomic analysis of Schistosoma mansoni proteins released during in vitro miracidium-to-sporocyst transformation // Mol. Biochem. Parasitol. V. 164. № 1. P. 32-44. https://doi.org/10.1016/j. molbiopara.2008.11.005
282. Wu S.-Z., Huang X.-D., Li Q., He M.-X., 2013. Interleukin-17 in pearl oyster (Pinctada fucata): molecular cloning and functional characterization // Fish Shellfi sh Immunol. V. 34. № 5. P. 1050-1056. https://doi.org/10.1016/j.fsi.2013.01.005
283. Xin L., Zhang H., Zhang R., Li H., Wang W., Wang L., et al., 2015. CgIL17-5, an ancient infl ammatory cytokine in Crassostrea gigas exhibiting the heterogeneity functions compared with vertebrate in-terleukin17 molecules // Dev. Comp. Immunol. V. 53. № 2. P. 339- 348. https://doi.org/10.1016/j.dci.2015.08.002
284. Xin L., Wang M., Zhang H., Li M., Wang H., Wang L., Song L., 2016. The categorization and mutual modulation of expanded MyD88s in Crassostrea gigas // Fish Shellfi sh Immunol. V. 54. P. 118-127. https://doi.org/10.1016/j.fsi.2016.04.014
285. Xu F., Li J., Zhang Y., Li X., Zhang Y., Xiang Z., Yu Z., 2015. CgIκB3, the third novel inhibitor of NF-kappa B (IκB) protein, is involved in the immune defense of the Pacifi c oyster, Crassostrea gigas // Fish Shellfish Immunol. V. 46. № 2. P. 648-655. https://doi. org/10.1016/j.fsi.2015.08.002
286. Yamaguchi K., Furuta E., Shimozawa A., 1988. Morphological and functional studies on hemolymph cells of land slug, Incilaria bilin-eata, in vivo and in vitro // Kuroda Y., Kurstak E., Maramorosch K. (eds). Invertebrate and Fish Tissue Culture, Japan Scientifi c Societies Press, Tokyo, Springer-Verlag, Berlin, P. 247-250.
287. Yang, D., Chertov O., Oppenheim J. J., 2001. The role of mammalian antimicrobial peptides and proteins in awakening of innate host defenses and adaptive immunity. Cell Mol. Life Sci. 58:978-989.
288. Yang C., Wang L., Zhang H., Wang L., Huang M., Sun Z., Sun Y., Song L. 2014. A new fi brinogen-related protein from Argopecten ir-radians (AiFREP-2) with broad recognition spectrum and bacteria agglutination activity // Fish Shellfi sh Immunol. V. 38. № 1. P. 221- 229. https://doi.org/10.1016/j.fsi.2014.03.025
289. Yazzie N., Salazar K. A., Castillo M. G., 2015. Identifi cation, molecular characterization, and gene expression analysis of a CD109 molecule in the Hawaiian bobtail squid Euprymna scolopes // Fish Shellfi sh Immunol. V. 44. №1. P. 342-355. https://doi.org/10.1016/j.fsi.2015.02.036
290. Yoshino T. P., Lodes M. J., Rege A. A., Chappell C. L., 1993. Protein-ase activity in miracidia, transformation excretory-secretory products, and primary sporocysts of Schistosoma mansoni // J. Parasitol. V. 79. № 1. P. 23-31.
291. Yoshino T. P., Coustau C., 2011. Immunobiology of Biomphalaria- Trematode Interactions // Toledo R., Fried B. (eds.). Biomphalaria Snails and Larval Trematodes. Springer, New York, NY. https://doi. org/10.1007/978-1-4419-7028-2_7
292. Yoshino T. P., Wu X.-J., Gonzalez L. A., Hokke C. H., 2013. Circulating Biomphalaria glabrata hemocyte subpopulations possess shared schistosome glycans and receptors capable of binding larval glyco-conjugates // Exp. Parasitol. V. 133 № 1. P. 28-36. https://doi. org/10.1016/j.exppara.2012.10.002
293. Yssel E., Wolmarans C. T., 1989. Factors infl uencing the leukocyte concentration of the freshwater snail Bulinus africanus // J. Inver-tebr. Pathol. V. 53. № 2. P. 269-271. https://doi.org/10.1016/0022- 2011(89)90017-7
294. Zannella C., Mosca F., Mariani F., Franci G., Follierro V., Galdiero M., et al., 2017. Microbial diseases of bivalve mollusks: infections, immunology and antimicrobial defense // Mar. Drugs. V. 15. № 6. P. 182. https://doi.org/10.3390/ md15060182
295. Zhang Y, He X, Yu F et al., 2013. Characteristic and functional analysis of Toll-like receptors (TLRs) in the lophotrocozoan, Crassostrea gigas, reveals ancient origin of TLR-mediated innate immunity. PLoS One 8:e76464. https://doi.org/10.1371/journal.pone.0076464
296. Zhang L., Li L., Zhu Y., Zhang G., Guo X., 2014. Transcriptome analysis reveals a rich gene set related to innate immunity in the Eastern oyster (Crassostrea virginica) // Mar. Biotechnol. (NY). V. 16. № 1. P. 17-33. https://doi.org/10.1007/s10126-013-9526-z
297. Zhang S.-M., Adema C. M., Kepler T. B., Loker E. S., 2004. Diversi-fi cation of Ig superfamily genes in an invertebrate // Science. V. 305. № 5681. P. 251-254. https://doi.org/10.1126/science.1088069
298. Zhang S.-M., Loker E. S., 2004. Representation of an immune responsive gene family encoding fi brinogen-related proteins in the freshwater mollusk Biomphalaria glabrata, an intermediate host for Schistosoma mansoni // Gene. V. 341. P. 255-266. https://doi. org/10.1016/j.gene.2004.07.003
299. Zhang S.-M., Zeng Y., Loker E. S., 2008. Expression profi ling and binding properties of fi brinogen-related proteins (FREPs), plasma proteins from the schistosome snail host Biomphalaria glabrata // Innate Im-mun. V. 14. № 3. P. 175-189. https://doi.org/ 10.1177/1753425908093800
300. Zhang S.-M., Loker E. S., Sullivan T. J., 2016. Pathogen-associated molecular patterns activate expression of genes involved in cell proliferation, immunity and detoxifi cation in the amebocyte-producing organ of the snail Biomphalaria glabrata // Dev. Comp. Immunol. V. 56. P. 25-36. https://doi.org/10.1016/j.dci.2015.11.008
301. Zielinski S., Pörtner H. O., 2000. Oxidative stress and antioxidative defense in cephalopods: a function of metabolic rate or age? // Comp. Biochem. Physiol. B Biochem. Mol. Biol. V. 125. № 2. P. 147-160. https://doi.org/10.1016/s0305-0491(99)00162-5